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INTRODUCTION

This	 third	 edition	 of	 Practical	 Packet	 Analysis	 was
written	and	edited	over	the	course	of	a	year	and	a	half,
from	 late	 2015	 to	 early	 2017,	 approximately	 6	 years
after	 the	 second	 edition’s	 release	 and	 10	 years	 since
publication	 of	 the	 original.	 This	 book	 contains	 a
significant	 amount	 of	 new	 content,	 with	 completely	 new	 capture	 files
and	scenarios	and	an	entirely	new	chapter	covering	packet	analysis	from	the
command	line	with	TShark	and	tcpdump.	If	you	liked	the	first	two	editions,
then	 you’ll	 like	 this	 one.	 It’s	 written	 in	 the	 same	 tone	 and	 breaks	 down
explanations	in	a	simple,	understandable	manner.	If	you	were	hesitant	to	try
out	 the	 last	 two	editions	because	 they	didn’t	 include	 the	 latest	 information
on	networking	or	Wireshark	updates,	you’ll	want	to	read	this	one	because	of
the	expanded	content	on	new	network	protocols	and	updated	information	on
Wireshark	2.x.

Why	This	Book?

You	may	find	yourself	wondering	why	you	should	buy	this	book	as	opposed
to	any	other	book	about	packet	analysis.	The	answer	lies	in	the	title:	Practical
Packet	Analysis.	 Let’s	 face	 it—nothing	 beats	 real-world	 experience,	 and	 the



closest	 you	 can	 come	 to	 that	 experience	 in	 a	 book	 is	 through	 practical
examples	with	real-world	scenarios.

The	 first	 half	 of	 this	 book	 gives	 you	 the	 knowledge	 you’ll	 need	 to
understand	packet	 analysis	 and	Wireshark.	The	 second	half	 of	 the	 book	 is
devoted	entirely	to	practical	cases	that	you	could	easily	encounter	in	day-to-
day	network	management.

Whether	you’re	a	network	technician,	a	network	administrator,	a	chief
information	officer,	a	desktop	technician,	or	even	a	network	security	analyst,
you	 will	 benefit	 greatly	 from	 understanding	 and	 using	 the	 packet	 analysis
techniques	described	in	this	book.

Concepts	and	Approach
I’m	generally	a	really	laid-back	guy,	so	when	I	teach	a	concept,	I	try	to	do	so
in	a	really	laid-back	way.	This	holds	true	for	the	language	used	in	this	book.
It’s	easy	to	get	lost	in	technical	jargon,	but	I’ve	tried	my	best	to	keep	things
as	 casual	 as	 possible.	 I’ve	 defined	 all	 the	 terms	 and	 concepts	 clearly	 and
without	any	added	fluff.	After	all,	I’m	from	the	great	state	of	Kentucky,	so	I
try	to	keep	the	big	words	to	a	minimum.	(But	you’ll	have	to	forgive	me	for
some	of	the	backwoods	country	verbiage	you’ll	find	throughout	the	text.)

The	 first	 several	 chapters	 are	 integral	 to	understanding	 the	 rest	of	 the
book,	 so	make	 it	 a	 point	 to	master	 the	 concepts	 in	 these	 pages	 first.	 The
second	 half	 of	 the	 book	 is	 purely	 practical.	 You	 may	 not	 see	 these	 exact
scenarios	in	your	workplace,	but	you	will	be	able	to	apply	the	concepts	they
teach	in	the	situations	you	do	encounter.

Here	is	a	quick	breakdown	of	this	book’s	contents:

Chapter	1:	Packet	Analysis	and	Network	Basics
What	 is	 packet	 analysis?	How	does	 it	work?	How	do	 you	do	 it?	This
chapter	 covers	 the	 basics	 of	 network	 communication	 and	 packet
analysis.

Chapter	2:	Tapping	into	the	Wire
This	chapter	covers	the	different	techniques	for	placing	a	packet	sniffer
on	your	network.

Chapter	3:	Introduction	to	Wireshark



Here,	we’ll	look	at	the	basics	of	Wireshark—where	to	get	it,	how	to	use
it,	 what	 it	 does,	 why	 it’s	 great,	 and	 all	 that	 good	 stuff.	 This	 edition
includes	 a	 new	 discussion	 about	 customizing	 Wireshark	 with
configuration	profiles.

Chapter	4:	Working	with	Captured	Packets
After	you	have	Wireshark	up	and	running,	you’ll	want	to	know	how	to
interact	 with	 captured	 packets.	 This	 is	 where	 you’ll	 learn	 the	 basics,
including	new,	more	detailed	sections	on	following	packet	streams	and
name	resolution.

Chapter	5:	Advanced	Wireshark	Features
Once	you’ve	learned	to	crawl,	it’s	time	to	take	off	running.	This	chapter
delves	into	the	advanced	Wireshark	features,	taking	you	under	the	hood
to	 show	you	 some	of	 the	 less	 apparent	 operations.	This	 includes	new,
more	detailed	sections	on	following	packet	streams	and	name	resolution.

Chapter	6:	Packet	Analysis	on	the	Command	Line
Wireshark	 is	 great,	 but	 sometimes	 you	need	 to	 leave	 the	 comfort	of	 a
graphical	 interface	 and	 interact	 with	 a	 packet	 on	 the	 command	 line.
This	new	chapter	shows	you	how	to	use	TShark	and	tcpdump,	the	two
best	command	line	packet	analysis	tools	for	the	job.

Chapter	7:	Network	Layer	Protocols
This	 chapter	 shows	 you	 what	 common	 network	 layer	 communication
looks	like	at	the	packet	level	by	examining	ARP,	IPv4,	IPv6,	and	ICMP.
To	troubleshoot	these	protocols	in	real-life	scenarios,	you	first	need	to
understand	how	they	work.

Chapter	8:	Transport	Layer	Protocols
Moving	 up	 the	 stack,	 this	 chapter	 discusses	 the	 two	 most	 common
transport	protocols,	TCP	and	UDP.	The	majority	of	packets	you	look
at	will	use	one	of	these	two	protocols,	so	understanding	what	they	look
like	at	the	packet	level	and	how	they	differ	is	important.

Chapter	9:	Common	Upper-Layer	Protocols
Continuing	with	protocol	coverage,	this	chapter	shows	you	what	four	of
the	 most	 common	 upper-layer	 network	 communication	 protocols—



HTTP,	DNS,	DHCP,	and	SMTP—look	like	at	the	packet	level.

Chapter	10:	Basic	Real-World	Scenarios
This	chapter	contains	breakdowns	of	some	common	traffic	and	the	first
set	 of	 real-world	 scenarios.	 Each	 scenario	 is	 presented	 in	 an	 easy-to-
follow	 format,	 giving	 the	 problem,	 an	 analysis,	 and	 a	 solution.	 These
basic	 scenarios	 deal	 with	 only	 a	 few	 computers	 and	 involve	 a	 limited
amount	of	analysis—just	enough	to	get	your	feet	wet.

Chapter	11:	Fighting	a	Slow	Network
The	most	common	problems	network	technicians	hear	about	generally
involve	 slow	network	 performance.	This	 chapter	 is	 devoted	 to	 solving
these	types	of	problems.

Chapter	12:	Packet	Analysis	for	Security
Network	 security	 is	 the	 biggest	 hot-button	 topic	 in	 the	 information
technology	 area.	 Chapter	 12	 shows	 you	 some	 scenarios	 related	 to
solving	security-related	issues	with	packet	analysis	techniques.

Chapter	13:	Wireless	Packet	Analysis
This	 chapter	 is	 a	 primer	 on	 wireless	 packet	 analysis.	 It	 discusses	 the
differences	between	wireless	analysis	and	wired	analysis,	and	it	includes
some	examples	of	wireless	network	traffic.

Appendix	A:	Further	Reading
The	first	appendix	of	this	book	suggests	some	other	reference	tools	and
websites	 that	 you	might	 find	 useful	 as	 you	 continue	 to	 use	 the	 packet
analysis	techniques	you’ve	learned.

Appendix	B:	Navigating	Packets
If	you	want	to	dig	a	little	deeper	into	interpreting	individual	packets,	the
second	 appendix	 provides	 an	 overview	 of	 how	 packet	 information	 is
stored	 in	binary	and	how	to	convert	binary	 into	hexadecimal	notation.
Then	 it	 shows	 you	 how	 to	 dissect	 packets	 that	 are	 presented	 in
hexadecimal	 notation	 with	 packet	 diagrams.	 This	 is	 handy	 if	 you’re
going	 to	 spend	 a	 lot	 of	 time	 analyzing	 custom	 protocols	 or	 using
command	line	analysis	tools.



How	to	Use	This	Book
I	have	intended	this	book	to	be	used	in	two	ways:

•					As	an	educational	text.	You’ll	read	chapter	by	chapter,	paying	particular
attention	to	the	real-world	scenarios	in	the	later	chapters,	to	gain	an
understanding	of	packet	analysis.

•					As	a	reference.	There	are	some	features	of	Wireshark	that	you	won’t	use
very	often,	so	you	may	forget	how	they	work.	Practical	Packet	Analysis	is	a
great	book	to	have	on	your	bookshelf	when	you	need	a	quick	refresher
on	how	to	use	a	specific	feature.	When	doing	packet	analysis	for	your
job,	you	may	want	to	reference	the	unique	charts,	diagrams,	and
methodologies	I’ve	provided.

About	the	Sample	Capture	Files
All	of	 the	 capture	 files	used	 in	 this	book	are	 available	 from	 the	book’s	No
Starch	Press	page,	https://www.nostarch.com/packetanalysis3/.	To	maximize	the
potential	of	this	book,	download	these	files	and	use	them	as	you	follow	along
with	the	examples.

The	Rural	Technology	Fund
I	couldn’t	write	an	introduction	without	mentioning	the	best	thing	to	come
from	Practical	Packet	Analysis.	Shortly	after	the	release	of	the	first	edition	of
this	 book,	 I	 founded	 a	 501(c)(3)	 nonprofit	 organization—the	 Rural
Technology	Fund	(RTF).

Rural	 students,	 even	 those	 with	 excellent	 grades,	 often	 have	 fewer
opportunities	 for	 exposure	 to	 technology	 than	 their	 city	 or	 suburban
counterparts.	Established	in	2008,	the	RTF	is	the	culmination	of	one	of	my
biggest	 dreams.	 It	 seeks	 to	 reduce	 the	 digital	 divide	 between	 rural
communities	and	their	urban	and	suburban	counterparts.	The	RTF	does	this
through	targeted	scholarship	programs,	community	 involvement,	donations
of	 educational	 technology	 resources	 to	 classrooms,	 and	 general	 promotion
and	advocacy	of	technology	in	rural	and	high-poverty	areas.

In	2016,	 the	RTF	was	able	 to	put	 technology	education	resources	 into

https://www.nostarch.com/packetanalysis3/


the	hands	of	more	 than	10,000	 students	 in	 rural	 and	high-poverty	 areas	 in
the	United	States.	I’m	pleased	to	announce	that	all	of	the	author’s	proceeds
from	this	book	go	directly	to	the	RTF	to	support	these	goals.	If	you	want	to
learn	more	 about	 the	Rural	Technology	Fund	or	how	you	 can	 contribute,
visit	 our	 website	 at	 http://www.ruraltechfund.org/	 or	 follow	 us	 on	 Twitter
@RuralTechFund.

Contacting	Me
I’m	always	thrilled	to	get	feedback	from	people	who	read	my	writing.	If	you
would	 like	 to	 contact	 me	 for	 any	 reason,	 you	 can	 send	 all	 questions,
comments,	 threats,	 and	 marriage	 proposals	 directly	 to	 me	 at
chris@chrissanders.org.	I	also	blog	regularly	at	http://www.chrissanders.org/	and
can	be	followed	on	Twitter	at	@chrissanders88.

http://www.ruraltechfund.org/
mailto:chris@chrissanders.org
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1
PACKET	ANALYSIS	AND	NETWORK	BASICS

A	 million	 different	 things	 can	 go	 wrong	 with	 a
computer	 network	 on	 any	 given	 day—from	 a	 simple
spyware	 infection	 to	 a	 complex	 router	 configuration
error—and	 it’s	 impossible	 to	 solve	 every	 problem
immediately.	The	best	we	 can	hope	 for	 is	 to	be	 fully
prepared	 with	 the	 knowledge	 and	 tools	 we	 need	 to
respond	to	these	types	of	issues.

To	 truly	 understand	network	 problems,	we	 go	 to	 the	 packet	 level.	All
network	 problems	 stem	 from	 this	 level,	 where	 even	 the	 prettiest-looking
applications	 can	 reveal	 their	 horrible	 implementations	 and	 seemingly
trustworthy	protocols	can	prove	malicious.	Here,	nothing	is	hidden	from	us.
Nothing	 is	obscured	by	misleading	menu	structures,	eye-catching	graphics,
or	 untrustworthy	 employees—there	 are	 no	 true	 secrets	 (only	 encrypted
ones).	The	more	we	can	do	at	the	packet	level,	the	more	we	can	control	our
network	and	solve	problems.	This	is	the	world	of	packet	analysis.

This	book	dives	into	this	world	headfirst.	Through	real-world	scenarios,
you’ll	learn	how	to	tackle	slow	network	communication,	identify	application
bottlenecks,	and	even	track	hackers.	By	the	time	you’ve	finished	reading	this



book,	you	should	be	able	to	 implement	packet	analysis	 techniques	that	will
help	you	solve	even	the	most	difficult	problems	in	your	own	network.

In	 this	 chapter,	 we’ll	 begin	 with	 the	 basics,	 focusing	 on	 network
communication.	The	material	here	will	help	you	gain	the	tools	you’ll	need	to
examine	different	scenarios.

Packet	Analysis	and	Packet	Sniffers
Packet	 analysis,	 often	 referred	 to	 as	 packet	 sniffing	 or	 protocol	 analysis,
describes	the	process	of	capturing	and	interpreting	live	data	as	it	flows	across
a	network	in	order	to	better	understand	what	is	happening	on	that	network.
Packet	 analysis	 is	 typically	 performed	 by	 a	 packet	 sniffer,	 a	 tool	 used	 to
capture	raw	network	data	going	across	the	wire.

Packet	analysis	can	help	with	the	following:

•					Understanding	network	characteristics
•					Learning	who	is	on	a	network
•					Determining	who	or	what	is	utilizing	available	bandwidth
•					Identifying	peak	network	usage	times
•					Identifying	malicious	activity
•					Finding	unsecured	and	bloated	applications

There	are	various	types	of	packet-sniffing	programs,	including	both	free
and	 commercial	 ones.	 Each	 program	 is	 designed	 with	 different	 goals	 in
mind.	A	few	popular	packet	analysis	programs	are	tcpdump,	OmniPeek,	and
Wireshark	(we’ll	primarily	be	using	Wireshark	in	this	book).	OmniPeek	and
Wireshark	 have	 graphical	 user	 interfaces	 (GUIs),	 while	 tcpdump	 is	 a
command	line	program.

Evaluating	a	Packet	Sniffer

You	need	 to	 consider	 a	 number	 of	 factors	when	 selecting	 a	 packet	 sniffer,
including	the	following:

Supported	 protocols	 	 	 All	 packet	 sniffers	 can	 interpret	 various
protocols.	Most	can	interpret	common	network	protocols	(such	as	IPv4
and	 ICMP),	 transport	 protocols	 (such	 as	 TCP	 and	 UDP),	 and	 even



application	 protocols	 (such	 as	DNS	 and	HTTP).	However,	 they	may
not	support	nontraditional,	newer,	or	more	complex	protocols	(such	as
IPv6,	 SMBv2,	 and	 SIP).	 When	 choosing	 a	 sniffer,	 make	 sure	 that	 it
supports	the	protocols	you’re	going	to	use.
User	 friendliness	 	 	 Consider	 the	 packet	 sniffer’s	 layout,	 ease	 of
installation,	and	general	workflow.	The	program	you	choose	should	fit
your	level	of	expertise.	If	you	have	very	little	packet	analysis	experience,
you	may	want	to	avoid	the	more	advanced	command	line	packet	sniffers
like	 tcpdump.	On	 the	other	hand,	 if	 you	are	a	packet	 analysis	 veteran,
you	may	find	an	advanced	program	more	useful.	As	you	gain	experience,
you	 may	 even	 find	 it	 useful	 to	 combine	 multiple	 packet-sniffing
programs	to	fit	particular	scenarios.
Cost			The	great	thing	about	packet	sniffers	is	that	there	are	many	free
ones	 that	 rival	 any	 commercial	 products.	The	most	 notable	 difference
between	 commercial	 products	 and	 their	 free	 alternatives	 is	 their
reporting	engines.	Commercial	products	typically	include	some	form	of
fancy	report	generation	module,	while	free	applications	either	lack	this
capability	or	offer	only	very	limited	reporting.
Program	 support	 	 	 Even	 after	 you	 have	 mastered	 the	 basics	 of	 a
sniffing	 program,	 you	 may	 occasionally	 need	 support	 to	 solve	 new
problems	 as	 they	 arise.	 When	 evaluating	 available	 support,	 look	 for
developer	 documentation,	 public	 forums,	 and	 mailing	 lists.	 Although
there	may	be	a	 lack	of	 formalized	commercial	 support	 for	 free	packet-
sniffing	 programs	 like	 Wireshark,	 communities	 of	 users	 and
contributors	often	provide	active	discussion	boards,	wikis,	and	blogs	to
help	you	get	more	out	of	your	packet	sniffer.
Source	 code	 access	 	 	 Some	packet	 sniffers	 are	 open	 source	 software.
This	means	 that	you	can	view	 the	 source	code	of	 the	program	and,	 in
some	cases,	even	suggest	and	make	changes	to	that	source	code.	If	you
have	a	very	specific	or	advanced	use	case	for	a	sniffing	application,	this
might	 be	 an	 appealing	 feature.	 Most	 commercial	 applications	 don’t
provide	source	code	access.
Operating	 system	 support	 	 	 Unfortunately,	 not	 all	 packet	 sniffers
support	 every	 operating	 system.	Choose	 one	 that	will	work	 on	 all	 the
operating	systems	that	you	need	to	support.	If	you	are	a	consultant,	you
may	be	required	to	capture	and	analyze	packets	on	a	variety	of	operating



systems,	so	you’ll	need	a	tool	that	runs	on	most	of	them.	Also,	keep	in
mind	that	you’ll	sometimes	capture	packets	on	one	machine	and	review
them	on	another.	Variations	between	operating	systems	may	force	you
to	use	a	different	application	for	each	device.

How	Packet	Sniffers	Work

The	packet-sniffing	process	 involves	 a	 cooperative	 effort	 between	 software
and	hardware.	This	process	can	be	broken	down	into	three	steps:

1.	 Collection:	First,	the	packet	sniffer	collects	raw	binary	data	from	the
wire.	Typically	this	is	done	by	switching	the	selected	network	interface
into	promiscuous	mode.	In	this	mode,	the	network	card	can	listen	to	all
traffic	on	a	network	segment,	not	only	the	traffic	that	is	addressed	to	it.

2.	 Conversion:	Next,	the	captured	binary	data	is	converted	into	a
readable	form.	This	is	as	far	as	most	advanced	command	line	packet
sniffers	can	go.	At	this	point,	the	network	data	can	be	interpreted	only
on	a	very	basic	level,	leaving	the	majority	of	the	analysis	to	the	end	user.

3.	 Analysis:	Finally,	the	packet	sniffer	conducts	an	analysis	of	the	captured
and	converted	data.	The	sniffer	verifies	the	protocol	of	the	captured
network	data	based	on	the	information	extracted	and	begins	its	analysis
of	that	protocol’s	specific	features.

How	Computers	Communicate
To	fully	understand	packet	analysis,	you	must	know	exactly	how	computers
communicate	 with	 each	 other.	 In	 this	 section,	 we’ll	 examine	 the	 basics	 of
network	 protocols,	 the	 Open	 Systems	 Interconnections	 (OSI)	 model,
network	data	frames,	and	the	hardware	that	supports	it	all.

Protocols

Modern	 networks	 are	 made	 up	 of	 a	 variety	 of	 systems	 running	 on	 many
different	 platforms.	 To	 communicate	 between	 systems,	 we	 use	 a	 set	 of
common	languages	called	protocols.	Common	protocols	include	Transmission
Control	 Protocol	 (TCP),	 Internet	 Protocol	 (IP),	 Address	 Resolution



Protocol	 (ARP),	 and	 Dynamic	 Host	 Configuration	 Protocol	 (DHCP).	 A
logical	grouping	of	protocols	that	work	together	is	called	a	protocol	stack.

It	might	 help	 to	 think	 of	 protocols	 as	 similar	 to	 the	 rules	 that	 govern
human	language.	Every	 language	has	rules	such	as	how	to	conjugate	verbs,
how	 to	 greet	 people,	 and	 even	how	 to	 properly	 thank	 someone.	Protocols
work	in	much	the	same	fashion,	allowing	us	to	define	how	packets	should	be
routed,	how	to	initiate	a	connection,	and	how	to	acknowledge	the	receipt	of
data.

A	protocol	can	be	extremely	simple	or	highly	complex,	depending	on	its
function.	 Although	 the	 various	 protocols	 can	 differ	 significantly,	 many
protocols	address	the	following	issues:

Connection	 initiation	 	 	 Is	 it	 the	 client	 or	 server	 initiating	 the
connection?	 What	 information	 must	 be	 exchanged	 prior	 to
communication?
Negotiation	of	connection	characteristics			Is	the	communication	of
the	protocol	encrypted?	How	are	encryption	keys	transmitted	between
communicating	hosts?
Data	 formatting	 	 	 How	 is	 the	 data	 contained	 within	 the	 packet
organized?	In	what	order	is	the	data	processed	by	the	devices	receiving
it?
Error	 detection	 and	 correction	 	 	What	 happens	 in	 the	 event	 that	 a
packet	takes	too	long	to	reach	its	destination?	How	does	a	client	recover
if	it	cannot	establish	communication	with	a	server	for	a	short	duration?
Connection	termination			How	does	one	host	signify	to	the	other	that
communication	has	ended?	What	final	information	must	be	transmitted
in	order	to	gracefully	terminate	communication?

The	Seven-Layer	OSI	Model

Protocols	are	separated	according	to	their	 functions	based	on	the	 industry-
standard	OSI	reference	model.	This	hierarchical	model,	with	seven	distinct
layers,	is	very	helpful	for	understanding	network	communications.	In	Figure
1-1,	 the	 layers	 of	 the	 OSI	 model	 are	 on	 the	 right,	 and	 the	 proper
terminology	 for	data	 at	 each	of	 these	 layers	 is	on	 the	 left.	The	 application
layer	 at	 the	 top	 represents	 the	programs	used	 to	 access	network	 resources.
The	 bottom	 layer	 is	 the	 physical	 layer,	 through	 which	 the	 network	 data



travels.	The	protocols	at	each	layer	work	together	to	ensure	data	is	properly
handled	by	the	protocols	at	layers	directly	above	and	below.

NOTE

The	OSI	model	was	originally	published	in	1983	by	the	International
Organization	for	Standardization	(ISO)	as	a	document	called	ISO	7498.	The
OSI	model	is	no	more	than	an	industry-recommended	standard.	Protocol
developers	are	not	required	to	follow	it	exactly.	In	fact,	the	OSI	model	is	not
the	only	networking	model;	for	example,	some	people	prefer	the	Department	of
Defense	(DoD)	model,	also	known	as	the	TCP/IP	model.

Figure	1-1:	A	hierarchical	view	of	the	seven	layers	of	the	OSI	model

Each	OSI	model	layer	has	a	specific	function,	as	follows:



Application	 layer	 (layer	 7)	 	 	 The	 topmost	 layer	 of	 the	 OSI	 model
provides	a	means	for	users	to	access	network	resources.	This	is	the	only
layer	typically	seen	by	end	users,	as	it	provides	the	interface	that	is	the
base	for	all	of	their	network	activities.
Presentation	layer	(layer	6)			This	layer	transforms	the	data	it	receives
into	 a	 format	 that	 can	 be	 read	 by	 the	 application	 layer.	 The	 data
encoding	 and	 decoding	 done	 here	 depends	 on	 the	 application	 layer
protocol	 that	 is	 sending	 or	 receiving	 the	 data.	The	 presentation	 layer
also	handles	several	forms	of	encryption	and	decryption	used	to	secure
data.
Session	 layer	 (layer	 5)	 	 	This	 layer	manages	 the	 dialogue,	 or	 session,
between	 two	 computers.	 It	 establishes,	 manages,	 and	 terminates	 this
connection	among	all	communicating	devices.	The	session	layer	is	also
responsible	for	establishing	whether	a	connection	is	duplex	(two-way)	or
half-duplex	 (one-way)	 and	 for	gracefully	 closing	 a	 connection	between
hosts	rather	than	dropping	it	abruptly.
Transport	layer	(layer	4)			The	primary	purpose	of	the	transport	layer
is	 to	 provide	 reliable	 data	 transport	 services	 to	 lower	 layers.	Through
flow	 control,	 segmentation/desegmentation,	 and	 error	 control,	 the
transport	 layer	 makes	 sure	 data	 gets	 from	 point	 to	 point	 error-free.
Because	 ensuring	 reliable	 data	 transportation	 can	 be	 extremely
cumbersome,	the	OSI	model	devotes	an	entire	layer	to	it.	The	transport
layer	 utilizes	 both	 connection-oriented	 and	 connectionless	 protocols.
Certain	firewalls	and	proxy	servers	operate	at	this	layer.
Network	layer	(layer	3)	 	 	This	 layer,	one	of	the	most	complex	of	the
OSI	layers,	is	responsible	for	routing	data	between	physical	networks.	It
sees	to	the	logical	addressing	of	network	hosts	(for	example,	through	an
IP	address).	It	also	handles	splitting	data	streams	into	smaller	fragments
and,	in	some	cases,	error	detection.	Routers	operate	at	this	layer.
Data	link	layer	(layer	2)			This	layer	provides	a	means	of	transporting
data	 across	 a	 physical	 network.	 Its	 primary	 purpose	 is	 to	 provide	 an
addressing	 scheme	 that	 can	 be	 used	 to	 identify	 physical	 devices	 (for
example,	MAC	addresses).	Bridges	and	switches	are	physical	devices	that
operate	at	the	data	link	layer.
Physical	layer	(layer	1)			The	layer	at	the	bottom	of	the	OSI	model	is
the	 physical	medium	 through	which	 network	 data	 is	 transferred.	This



layer	 defines	 the	 physical	 and	 electrical	 nature	 of	 all	 hardware	 used,
including	 voltages,	 hubs,	 network	 adapters,	 repeaters,	 and	 cabling
specifications.	 The	 physical	 layer	 establishes	 and	 terminates
connections,	provides	a	means	of	sharing	communication	resources,	and
converts	signals	from	digital	to	analog	and	vice	versa.

NOTE

A	common	mnemonic	device	for	remembering	the	layers	of	the	OSI	model	is
Please	Do	Not	Throw	Sausage	Pizza	Away.	The	first	letter	of	each	word
refers	to	each	layer	of	the	OSI	model,	starting	with	the	first	layer.

Table	1-1	lists	some	of	the	more	common	protocols	used	at	each	layer
of	the	OSI	model.

Table	1-1:	Typical	Protocols	Used	at	Each	Layer	of	the	OSI	Model

Layer Protocols

Application HTTP,	SMTP,	FTP,	Telnet

Presentation ASCII,	MPEG,	JPEG,	MIDI

Session NetBIOS,	SAP,	SDP,	NWLink

Transport TCP,	UDP,	SPX

Network IP,	IPX

Data	link Ethernet,	Token	Ring,	FDDI,	AppleTalk

Physical wired,	wireless

Although	the	OSI	model	is	no	more	than	a	recommended	standard,	you
should	know	it	by	heart	as	it	provides	a	useful	vocabulary	for	thinking	about
and	 describing	 network	 problems.	 As	 we	 progress	 through	 this	 book,	 you
will	 find	 that	 router	 issues	 soon	 become	 “layer	 3	 problems”	 and	 software
issues	are	readily	recognized	as	“layer	7	problems.”

NOTE

A	colleague	once	told	me	about	a	user	who	complained	that	he	could	not	access	a
network	resource.	The	issue	was	the	result	of	the	user’s	entering	an	incorrect



password.	My	colleague	referred	to	this	as	a	layer	8	issue.	Layer	8	is	the
unofficial	user	layer.	This	term	is	commonly	used	among	those	who	live	at	the
packet	level.

Data	Flow	Through	the	OSI	Model

The	initial	data	transfer	on	a	network	begins	at	the	application	layer	of	the
transmitting	 system.	Data	works	 its	way	down	 the	 seven	 layers	of	 the	OSI
model	until	it	reaches	the	physical	layer,	at	which	point	the	physical	layer	of
the	transmitting	system	sends	the	data	to	the	receiving	system.	The	receiving
system	picks	up	the	data	at	 its	physical	 layer,	and	the	data	proceeds	up	the
layers	of	the	receiving	system	to	the	application	layer	at	the	top.

Each	layer	in	the	OSI	model	is	capable	of	communicating	only	with	the
layers	directly	above	and	below	it.	For	example,	layer	2	can	send	and	receive
data	only	from	layers	1	and	3.

None	of	the	services	provided	by	various	protocols	at	any	given	level	of
the	 OSI	 is	 redundant.	 For	 example,	 if	 a	 protocol	 at	 one	 layer	 provides	 a
particular	service,	then	no	other	protocol	at	any	other	layer	will	provide	this
same	 service.	 Protocols	 at	 different	 levels	 may	 have	 features	 with	 similar
goals,	but	they	will	function	a	bit	differently.

Protocols	at	corresponding	 layers	on	the	sending	and	receiving	devices
are	complementary.	So,	 for	example,	 if	a	protocol	at	 layer	7	of	the	sending
device	 is	 responsible	 for	 formatting	 the	 data	 being	 transmitted,	 the
corresponding	protocol	 at	 layer	7	of	 the	 receiving	device	 is	 expected	 to	be
responsible	for	reading	that	formatted	data.

Figure	1-2	is	a	graphical	representation	of	the	OSI	model	as	it	relates	to
two	communicating	devices.	You	can	see	communication	going	from	top	to
bottom	on	one	device	and	then	reversing	when	it	reaches	the	second	device.



Figure	1-2:	Protocols	working	at	the	same	layer	on	both	the	sending	and	receiving	systems

Data	Encapsulation

The	protocols	at	different	 layers	of	 the	OSI	model	pass	data	between	each
other	with	the	aid	of	data	encapsulation.	Each	layer	in	the	stack	is	responsible
for	adding	a	header	or	footer—extra	bits	of	information	that	allow	the	layers
to	 communicate—to	 the	 data	 being	 transferred.	 For	 example,	 when	 the
transport	layer	receives	data	from	the	session	layer,	the	transport	layer	adds
its	 own	 header	 information	 to	 that	 data	 before	 passing	 it	 to	 the	 network
layer.

The	 encapsulation	 process	 creates	 a	 protocol	 data	 unit	 (PDU),	 which
includes	the	data	being	sent	and	all	header	or	footer	information	added	to	it.
As	 data	moves	 down	 the	OSI	model	 and	 the	 various	 protocols	 add	header
and	 footer	 information,	 the	 PDU	 changes	 and	 grows.	 The	 PDU	 is	 in	 its
final	form	when	it	reaches	the	physical	layer,	at	which	point	it	is	sent	to	the



destination	 device.	 The	 receiving	 device	 strips	 the	 protocol	 headers	 and
footers	from	the	PDU	as	the	data	climbs	up	the	OSI	layers	in	the	reverse	of
the	order	they	were	added.	Once	the	PDU	reaches	the	top	layer	of	the	OSI
model,	only	the	original	application	layer	data	remains.

NOTE

The	OSI	model	uses	specific	terms	to	describe	packaged	data	at	each	layer.	The
physical	layer	contains	bits,	the	data	link	layer	contains	frames,	the	network
layer	contains	packets,	and	the	transport	layer	contains	segments.	The	top	three
layers	simply	use	the	term	data.	This	nomenclature	isn’t	used	much	in
practice,	so	we’ll	generally	just	use	the	term	packet	to	refer	to	a	complete	or
partial	PDU	that	includes	header	and	footer	information	from	a	few	or	many
layers	of	the	OSI	model.

To	illustrate	how	encapsulation	of	data	works,	we’ll	look	at	a	simplified
practical	 example	 of	 a	 packet	 being	 built,	 transmitted,	 and	 received	 in
relation	to	the	OSI	model.	Keep	in	mind	that	as	analysts,	we	don’t	often	talk
about	 the	 session	 or	 presentation	 layers,	 so	 those	 will	 be	 absent	 in	 this
example	(and	the	rest	of	this	book).

In	this	scenario,	we	are	attempting	to	browse	to	http://www.google.com/.
First,	we	must	generate	a	request	packet	that	is	transmitted	from	our	source
client	 computer	 to	 the	destination	 server	 computer.	This	 scenario	 assumes
that	a	TCP/IP	communication	session	has	already	been	initiated.	Figure	1-3
illustrates	the	data	encapsulation	process	in	this	example.

We	 begin	 on	 our	 client	 computer	 at	 the	 application	 layer.	 We	 are
browsing	to	a	website,	so	the	application	layer	protocol	being	used	is	HTTP;
the	HTTP	protocol	will	 issue	 a	 command	 to	 download	 the	 file	 index.html
from	google.com.

NOTE

In	practice,	the	browser	will	request	the	website	document	root	first,	signified
by	a	forward	slash	(/).	When	the	web	server	receives	this	request,	it	will
redirect	the	browser	to	whatever	file	it	is	configured	to	serve	upon	receiving	a
document	root	request.	This	is	usually	something	like	index.html	or
index.php.	We’ll	cover	this	more	in	Chapter	9	when	we	discuss	HTTP.

http://www.google.com/
http://google.com


Once	our	application	layer	protocol	has	sent	the	command,	our	concern
is	with	getting	the	packet	to	its	destination.	The	data	in	our	packet	is	passed
down	 the	OSI	 stack	 to	 the	 transport	 layer.	HTTP	 is	 an	 application	 layer
protocol	 that	 uses	 (or	 sits	 on)	 TCP,	 so	 TCP	 serves	 as	 the	 transport	 layer
protocol	 used	 to	 ensure	 reliable	 delivery	 of	 the	 packet.	 A	 TCP	 header	 is
generated	and	added	to	the	PDU,	as	shown	in	the	transport	layer	of	Figure
1-3.	This	TCP	header	 includes	 sequence	numbers	 and	other	 data	 that	 are
appended	to	the	packet,	ensuring	that	the	packet	is	properly	delivered.

Figure	1-3:	A	graphical	representation	of	encapsulation	of	data	between	client	and	server

NOTE

We	often	say	that	one	protocol	“sits	on”	or	“rides	on”	another	protocol	because
of	the	top-down	design	of	the	OSI	model.	An	application	protocol	such	as
HTTP	provides	a	particular	service	and	relies	on	TCP	to	ensure	reliable
delivery	of	its	service.	Both	of	those	services	rely	on	the	IP	protocol	at	the
network	level	to	address	and	deliver	their	data.	Therefore,	HTTP	sits	on



TCP,	which	sits	on	IP.

Having	done	its	job,	TCP	hands	the	packet	off	to	IP,	which	is	the	layer
3	protocol	responsible	for	the	 logical	addressing	of	the	packet.	IP	creates	a
header	 containing	 logical	 addressing	 information,	 adds	 it	 to	 the	PDU,	and
passes	 the	 packet	 along	 to	 the	 Ethernet	 on	 the	 data	 link	 layer.	 Physical
Ethernet	 addresses	 are	 stored	 in	 the	 Ethernet	 header.	 The	 packet	 is	 now
fully	 assembled	 and	passed	 to	 the	physical	 layer,	where	 it	 is	 transmitted	 as
zeros	and	ones	across	the	network.

The	completed	packet	traverses	the	network	cabling	system,	eventually
reaching	 the	 Google	 web	 server.	 The	 web	 server	 begins	 by	 reading	 the
packet	 from	 the	bottom	up,	meaning	 that	 it	 first	 reads	 the	data	 link	 layer,
which	 contains	 the	 physical	 Ethernet	 addressing	 information	 that	 the
network	card	uses	 to	determine	 that	 the	packet	 is	 intended	 for	a	particular
server.	 Once	 this	 information	 is	 processed,	 the	 layer	 2	 information	 is
stripped	away,	and	the	layer	3	information	is	processed.

The	layer	3	IP	addressing	information	is	read	to	ensure	that	the	packet
is	properly	addressed	and	is	not	fragmented.	This	data	is	also	stripped	away
so	that	the	next	layer	can	be	processed.

Layer	 4	 TCP	 information	 is	 now	 read	 to	 ensure	 that	 the	 packet	 has
arrived	in	sequence.	Then	the	layer	4	header	information	is	stripped	away	to
leave	only	the	application	layer	data,	which	can	be	passed	to	the	web	server
application	hosting	 the	website.	 In	 response	 to	 this	packet	 from	 the	client,
the	 server	 should	 transmit	 a	 TCP	 acknowledgment	 packet	 so	 the	 client
knows	its	request	was	received,	followed	by	the	index.html	file.

All	 packets	 are	 built	 and	 processed	 as	 described	 in	 this	 example,
regardless	of	which	protocols	are	used.	But	at	the	same	time,	keep	in	mind
that	 not	 every	 packet	 on	 a	 network	 is	 generated	 from	 an	 application	 layer
protocol,	so	you	will	see	packets	that	contain	only	information	from	layer	2,
3,	or	4	protocols.

Network	Hardware

Now	 it’s	 time	 to	 look	 at	network	hardware,	where	 the	dirty	work	 is	 done.
We’ll	focus	on	just	a	few	of	the	more	common	pieces	of	network	hardware:
hubs,	switches,	and	routers.



Hubs

A	hub	is	generally	a	box	with	multiple	RJ-45	ports,	like	the	NETGEAR	hub
shown	 in	Figure	1-4.	Hubs	 range	 from	very	 small	 4-port	 devices	 to	 larger
48-port	devices	designed	for	rack	mounting	in	a	corporate	environment.

Figure	1-4:	A	typical	4-port	Ethernet	hub

Because	hubs	can	generate	a	 lot	of	unnecessary	network	traffic	and	are
capable	of	operating	only	 in	half-duplex	mode	 (they	cannot	send	and	receive
data	at	the	same	time),	you	won’t	typically	see	them	used	in	most	modern	or
high-density	 networks;	 switches	 are	 used	 instead	 (discussed	 in	 the	 next
section).	However,	you	should	know	how	hubs	work,	since	they	will	be	very
important	 to	 packet	 analysis	 when	 using	 the	 “hubbing	 out”	 technique
discussed	in	Chapter	2.

A	hub	 is	 no	more	 than	 a	 repeating	 device	 that	 operates	 on	 the	 physical
layer	 of	 the	OSI	model.	 It	 takes	 packets	 sent	 from	one	port	 and	 transmits
(repeats)	them	to	every	other	port	on	the	device,	and	it’s	up	to	the	receiving
device	to	accept	or	reject	each	packet.	For	example,	if	a	computer	on	port	1
of	a	4-port	hub	needs	to	send	data	to	a	computer	on	port	2,	the	hub	sends
those	packets	 to	ports	 2,	 3,	 and	4.	The	 clients	 connected	 to	ports	 3	 and	4
examine	 the	 destination	Media	Access	Control	 (MAC)	 address	 field	 in	 the
Ethernet	header	of	the	packet	and	see	that	the	packet	is	not	for	them,	so	they
drop	 (discard)	 the	 packet.	 Figure	 1-5	 illustrates	 an	 example	 in	 which
computer	 A	 is	 transmitting	 data	 to	 computer	 B.	When	 computer	 A	 sends
this	 data,	 all	 computers	 connected	 to	 the	 hub	 receive	 it.	 However,	 only
computer	B	actually	accepts	the	data;	the	other	computers	discard	it.



Figure	1-5:	The	flow	of	traffic	when	computer	A	transmits	data	to	computer	B	through	a	hub

As	 an	 analogy,	 suppose	 that	 you	 sent	 an	 email	 with	 the	 subject	 line
“Attention	 all	marketing	 staff”	 to	 every	 employee	 in	 your	 company,	 rather
than	 to	 only	 those	 people	 who	 work	 in	 the	 marketing	 department.	 The
marketing	department	employees	see	the	email	is	for	them	and	open	it.	The
other	employees	 see	 it’s	not	 for	 them	and	discard	 it.	You	can	 see	how	this
approach	to	communication	would	result	in	a	lot	of	unnecessary	traffic	and
wasted	time,	yet	this	is	exactly	how	a	hub	functions.

The	best	alternatives	 to	hubs	 in	production	and	high-density	networks
are	 switches,	 which	 are	 full-duplex	 devices	 that	 can	 send	 and	 receive	 data
synchronously.

Switches

Like	a	hub,	a	 switch	 is	designed	 to	 repeat	packets.	However,	unlike	a	hub,
rather	than	broadcasting	data	to	every	port,	a	switch	sends	data	to	only	the
computer	 for	 which	 the	 data	 is	 intended.	 Switches	 look	 just	 like	 hubs,	 as
shown	in	Figure	1-6.



Figure	1-6:	A	rack-mountable	48-port	Ethernet	switch

Several	 larger	switches	on	the	market,	such	as	Cisco-branded	ones,	are
managed	 via	 specialized,	 vendor-specific	 software	 or	web	 interfaces.	These
switches	 are	 commonly	 referred	 to	 as	managed	 switches.	Managed	 switches
provide	 several	 features	 that	 can	 be	 useful	 in	 network	 management,
including	 the	ability	 to	enable	or	disable	 specific	ports,	view	port	 statistics,
make	configuration	changes,	and	remotely	reboot.

Switches	 also	 offer	 advanced	 functionality	 for	 handling	 transmitted
packets.	To	be	able	to	communicate	directly	with	specific	devices,	switches
must	 be	 able	 to	 uniquely	 identify	 devices	 based	 on	 their	MAC	 addresses,
which	means	that	they	must	operate	on	the	data	link	layer	of	the	OSI	model.

Switches	store	the	layer	2	address	of	every	connected	device	in	a	CAM
table,	which	acts	as	a	kind	of	 traffic	cop.	When	a	packet	 is	 transmitted,	 the
switch	 reads	 the	 layer	 2	 header	 information	 in	 the	 packet	 and,	 using	 the
CAM	 table	 as	 reference,	 determines	 to	 which	 port(s)	 to	 send	 the	 packet.
Switches	send	packets	only	 to	specific	ports,	 thus	greatly	reducing	network
traffic.

Figure	 1-7	 illustrates	 traffic	 flow	 through	 a	 switch.	 In	 this	 figure,
computer	 A	 is	 sending	 data	 to	 only	 the	 intended	 recipient:	 computer	 B.
Multiple	 conversations	 can	 happen	 on	 the	 network	 at	 the	 same	 time,	 but
information	 is	 communicated	 directly	 between	 the	 switch	 and	 intended
recipient,	not	between	the	switch	and	all	connected	computers.



Figure	1-7:	The	flow	of	traffic	when	computer	A	transmits	data	to	computer	B	through	a	switch

Routers

A	 router	 is	 an	 advanced	 network	 device	 with	 a	 much	 higher	 level	 of
functionality	 than	 a	 switch	 or	 a	 hub.	 A	 router	 can	 take	 many	 shapes	 and
forms,	but	most	devices	have	several	LED	indicator	lights	on	the	front	and	a
few	network	ports	on	the	back,	depending	on	the	size	of	the	network.	Figure
1-8	shows	an	example	of	a	small	router.

Figure	1-8:	A	low-level	Enterasys	router	suitable	for	use	in	a	small	to	midsized	network



Routers	operate	at	layer	3	of	the	OSI	model,	where	they	are	responsible
for	forwarding	packets	between	two	or	more	networks.	The	process	used	by
routers	to	direct	the	flow	of	traffic	among	networks	is	called	routing.	Several
types	of	routing	protocols	dictate	how	different	types	of	packets	are	routed
to	 other	 networks.	 Routers	 commonly	 use	 layer	 3	 addresses	 (such	 as	 IP
addresses)	to	uniquely	identify	devices	on	a	network.

A	good	way	to	illustrate	the	concept	of	routing	is	to	use	the	analogy	of	a
neighborhood	with	several	streets.	Think	of	the	houses,	with	their	addresses,
as	 computers.	Then	 think	of	 each	 street	 as	 a	network	 segment.	Figure	1-9
illustrates	 this	 comparison.	 From	 your	 house,	 you	 can	 easily	 go	 visit	 your
neighbors	in	the	other	houses	on	the	same	street	by	walking	in	a	straight	line
from	 your	 front	 door	 to	 theirs.	 In	 the	 same	 way,	 a	 switch	 allows
communication	among	all	computers	on	a	network	segment.

However,	communicating	with	a	neighbor	who	lives	on	another	street	is
like	 communicating	 with	 a	 computer	 that	 is	 not	 on	 the	 same	 segment.
Referring	to	Figure	1-9,	 let’s	say	that	you’re	sitting	at	502	Vine	Street	and
need	to	get	to	206	Dogwood	Lane.	In	order	to	do	this,	you	must	first	turn
onto	 Oak	 Street	 and	 then	 turn	 onto	 Dogwood	 Lane.	 Think	 of	 this	 as
crossing	 network	 segments.	 If	 the	 device	 at	 192.168.0.3	 needs	 to
communicate	with	the	device	at	192.168.0.54,	it	must	cross	a	router	to	get	to
the	 10.100.1.x	 network	 and	 then	 cross	 the	 destination	 network	 segment’s
router	before	it	can	get	to	the	destination	network	segment.

The	size	and	number	of	routers	on	a	network	will	 typically	depend	on
the	 network’s	 size	 and	 function.	 Personal	 and	 home	 office	 networks	 may
have	 only	 a	 small	 router	 located	 at	 the	 edge	 of	 the	 network.	 A	 large
corporate	 network	 might	 have	 several	 routers	 spread	 throughout	 various
departments,	all	connecting	to	one	large	central	router	or	layer	3	switch	(an
advanced	type	of	switch	that	also	has	built-in	functionality	to	act	as	a	router).



Figure	1-9:	Comparison	of	a	routed	network	to	neighborhood	streets

As	 you	 look	 at	 more	 and	 more	 network	 diagrams,	 you	 will	 come	 to
understand	how	data	flows	through	these	various	points.	Figure	1-10	shows
the	layout	of	a	very	common	form	of	routed	network.	In	this	example,	two
separate	 networks	 are	 connected	 via	 a	 single	 router.	 If	 a	 computer	 on
network	 A	 wishes	 to	 communicate	 with	 a	 computer	 on	 network	 B,	 the
transmitted	data	must	go	through	the	router.



Figure	1-10:	The	flow	of	traffic	when	computer	A	on	one	network	transmits	data	to	computer	X	on
another	network	through	a	router

Traffic	Classifications
Network	traffic	can	be	classified	as	one	of	three	types:	broadcast,	multicast,
and	unicast.	Each	classification	has	a	distinct	 characteristic	 that	determines
how	packets	in	that	class	are	handled	by	networking	hardware.

Broadcast	Traffic

A	broadcast	 packet	 is	 a	packet	 that’s	 sent	 to	all	ports	on	a	network	 segment,
regardless	of	whether	a	given	port	is	a	hub	or	switch.

There	are	layer	2	and	layer	3	forms	of	broadcast	traffic.	On	layer	2,	the
MAC	address	ff:ff:ff:ff:ff:ff	 is	the	reserved	broadcast	address,	and	any	traffic
sent	to	this	address	is	broadcast	to	the	entire	network	segment.	Layer	3	also
has	a	 specific	broadcast	address,	but	 it	varies	based	on	the	network	address
range	in	use.

The	highest	possible	IP	address	 in	an	IP	network	range	is	reserved	for
use	as	the	broadcast	address.	For	example,	if	your	computer	has	an	address	of
192.168.0.20	 and	 a	 255.255.255.0	 subnet	 mask,	 then	 192.168.0.255	 is	 the



broadcast	address	(more	on	IP	addressing	in	Chapter	7).
The	extent	 to	which	broadcast	packets	can	travel	 is	called	 the	broadcast

domain,	 which	 is	 the	 network	 segment	 where	 any	 computer	 can	 directly
transmit	 to	 another	 computer	 without	 going	 through	 a	 router.	 In	 larger
networks	 with	 multiple	 hubs	 or	 switches	 connected	 via	 different	 media,
broadcast	packets	transmitted	from	one	switch	reach	all	the	ports	on	all	the
other	 switches	 on	 the	network,	 as	 the	 packets	 are	 repeated	 from	 switch	 to
switch.	Figure	1-11	shows	an	example	of	two	broadcast	domains	on	a	small
network.	Because	each	broadcast	domain	extends	until	it	reaches	the	router,
broadcast	packets	circulate	only	within	this	specified	broadcast	domain.

Figure	1-11:	A	broadcast	domain	extends	to	everything	behind	the	current	routed	segment.

Our	 earlier	 neighborhood	 analogy	 provides	 good	 insight	 into	 how
broadcast	domains	work,	too.	You	can	think	of	a	broadcast	domain	as	being
like	a	neighborhood	street	where	all	your	neighbors	are	sitting	on	their	front
porch.	If	you	stand	on	your	front	porch	and	yell,	the	people	on	your	street
will	 be	 able	 to	 hear	 you.	 However,	 if	 you	 want	 to	 talk	 to	 someone	 on	 a
different	 street,	 you	 need	 to	 find	 a	 way	 to	 speak	 to	 that	 person	 directly,
rather	than	broadcasting	(yelling)	from	your	front	porch.

Multicast	Traffic



Multicast	is	a	means	of	transmitting	a	packet	from	a	single	source	to	multiple
destinations	 simultaneously.	 The	 goal	 of	 multicasting	 is	 to	 use	 as	 little
bandwidth	as	possible.	The	optimization	of	this	traffic	lies	in	that	a	stream	of
data	 is	 replicated	 fewer	 times	 along	 its	 path	 to	 its	 destination.	 The	 exact
handling	 of	multicast	 traffic	 is	 highly	 dependent	 on	 its	 implementation	 in
individual	protocols.

The	 primary	 method	 of	 implementing	 multicast	 traffic	 is	 via	 an
addressing	scheme	that	joins	the	packet	recipients	to	a	multicast	group.	This
is	how	IP	multicast	works.	This	addressing	scheme	ensures	that	the	packets
cannot	be	transmitted	to	computers	to	which	the	packets	are	not	destined.	In
fact,	 IP	devotes	 an	 entire	 range	of	 addresses	 to	multicast.	 If	 you	 see	 an	 IP
address	in	the	224.0.0.0	to	239.255.255.255	range,	it	is	most	likely	handling
multicast	traffic	because	these	ranges	are	reserved	for	that	purpose.

Unicast	Traffic

A	unicast	 packet	 is	 transmitted	 from	one	computer	directly	 to	another.	The
details	of	how	unicast	functions	are	dependent	on	the	protocol	using	it.	For
example,	 consider	 a	 device	 that	wishes	 to	 communicate	with	 a	web	 server.
This	is	a	one-to-one	connection,	so	this	communication	process	would	begin
with	the	client	device	transmitting	a	packet	to	only	the	web	server.

Final	Thoughts
This	chapter	covered	the	basics	of	networking	that	you	need	as	a	foundation
for	 packet	 analysis.	 You	must	 understand	what	 is	 going	 on	 at	 this	 level	 of
network	 communication	 before	 you	 can	 begin	 troubleshooting	 network
issues.	 In	Chapter	2,	we	will	 look	 at	multiple	 techniques	 for	 capturing	 the
packets	you	want	to	analyze.



2
TAPPING	INTO	THE	WIRE

A	key	decision	for	effective	packet	analysis	is	where	to
physically	 position	 a	 packet	 sniffer	 to	 appropriately
capture	the	data.	Packet	analysts	often	refer	to	placing
the	 packet	 sniffer	 as	 sniffing	 the	 wire,	 tapping	 the
network,	or	tapping	into	the	wire.

Unfortunately,	sniffing	packets	isn’t	as	simple	as	plugging	a	laptop	into	a
network	port	and	capturing	 traffic.	 In	 fact,	 it’s	 sometimes	more	difficult	 to
place	a	packet	sniffer	on	a	network	than	it	is	to	actually	analyze	the	packets.
Sniffer	 placement	 is	 challenging	 because	 devices	 can	 be	 connected	 using	 a
large	 variety	 of	 networking	 hardware.	 Figure	 2-1	 illustrates	 a	 typical
situation.	Because	 the	devices	on	a	modern	network	 (switches	 and	 routers)
each	handle	traffic	differently,	you	must	take	into	account	the	physical	setup
of	the	network	you	are	analyzing.

The	 goal	 of	 this	 chapter	 is	 to	 help	 you	 develop	 an	 understanding	 of
packet	 sniffer	 placement	 in	 a	 variety	 of	 different	 network	 topologies.	 But
first,	 let’s	 look	 at	 how	we’re	 able	 to	 see	 all	 the	packets	 that	 cross	 the	wire
we’re	tapping	into.



Figure	2-1:	Placing	your	sniffer	on	the	network	can	be	challenging	when	there	are	many
connections,	and	getting	the	data	you	want	can	be	tricky.

Living	Promiscuously
Before	you	can	sniff	packets	on	a	network,	you	need	a	network	interface	card
(NIC)	 that	 supports	 a	 promiscuous	mode	 driver.	Promiscuous	mode	 is	 what
allows	a	NIC	to	view	all	packets	crossing	the	wire.

As	 you	 learned	 in	 Chapter	 1,	 with	 network	 broadcast	 traffic,	 it’s
common	 for	 devices	 to	 receive	 packets	 that	 are	 not	 actually	 destined	 for
them.	For	example,	the	Address	Resolution	Protocol	(ARP),	a	crucial	fixture
on	 any	 network	 that	 we’ll	 examine	 in	 depth	 in	 Chapter	 7,	 is	 used	 to
determine	which	MAC	address	 corresponds	 to	 a	 particular	 IP	 address.	To
find	the	matching	MAC	address,	a	device	sends	an	ARP	broadcast	packet	to
every	 device	 on	 its	 broadcast	 domain	 in	 hopes	 that	 the	 correct	 one	 will
respond.

A	 broadcast	 domain	 (the	 network	 segment	 where	 any	 computer	 can
directly	 transmit	 to	another	computer	without	going	through	a	router)	can
consist	 of	 several	 devices,	 but	 only	 the	 correct	 recipient	 device	 on	 that
domain	should	be	interested	in	the	ARP	broadcast	packet	that’s	transmitted.
It	would	be	terribly	inefficient	for	every	device	on	the	network	to	process	the
ARP	broadcast	 packet.	 Instead,	 if	 the	packet	 is	 not	destined	 for	 the	device
and	therefore	 isn’t	useful	 to	 it,	 the	device’s	NIC	discards	 the	packet	 rather
than	passing	it	to	the	CPU	for	processing.

Discarding	 packets	 not	 destined	 for	 the	 receiving	 host	 improves



processing	efficiency,	but	it’s	not	so	great	for	packet	analysts.	As	analysts,	we
typically	want	 to	capture	 every	packet	 sent	across	 the	wire	 so	we	don’t	 risk
missing	some	crucial	piece	of	information.

We	 can	 ensure	 we	 capture	 all	 of	 the	 traffic	 by	 using	 the	 NIC’s
promiscuous	mode.	When	operating	in	promiscuous	mode,	the	NIC	passes
every	packet	 it	 sees	 to	 the	host’s	 processor,	 regardless	of	 addressing.	Once
the	packet	makes	it	to	the	CPU,	a	packet-sniffing	application	can	grab	it	for
analysis.

Most	modern	NICs	support	promiscuous	mode,	and	Wireshark	includes
the	 libpcap/WinPcap	 driver,	 which	 allows	 it	 to	 switch	 your	 NIC	 directly
into	 promiscuous	mode	 from	 the	Wireshark	GUI.	 (We’ll	 talk	more	 about
libpcap/WinPcap	in	Chapter	3.)

For	 the	purposes	of	 this	book,	you	must	have	a	NIC	and	an	operating
system	that	support	the	use	of	promiscuous	mode.	The	only	time	you	don’t
need	to	sniff	in	promiscuous	mode	is	when	you	want	to	see	only	the	traffic
sent	 directly	 to	 the	 MAC	 address	 of	 the	 interface	 from	 which	 you	 are
sniffing.

NOTE

Most	operating	systems	(including	Windows)	will	not	let	you	use	a	NIC	in
promiscuous	mode	unless	you	have	elevated	user	privileges.	If	you	can’t	legally
obtain	these	privileges	on	a	system,	chances	are	that	you	shouldn’t	be
performing	any	type	of	packet	sniffing	on	that	particular	network.

Sniffing	Around	Hubs
Sniffing	 on	 a	 network	 that	 has	 hubs	 installed	 is	 a	 dream	 for	 any	 packet
analyst.	As	you	learned	in	Chapter	1,	traffic	sent	through	a	hub	goes	through
every	port	connected	to	that	hub.	Therefore,	to	analyze	the	traffic	running
through	 a	 computer	 connected	 to	 a	 hub,	 all	 you	 need	 to	 do	 is	 connect	 a
packet	 sniffer	 to	 an	 empty	 port	 on	 the	 hub.	 You’ll	 be	 able	 to	 see	 all
communication	 to	 and	 from	 that	 computer,	 as	 well	 as	 all	 communication
between	any	other	devices	plugged	into	that	hub.	As	illustrated	in	Figure	2-
2,	your	visibility	window	is	limitless	when	your	sniffer	is	connected	to	a	hub-
based	network.



Figure	2-2:	Sniffing	on	a	hub	network	provides	a	limitless	visibility	window.

NOTE

The	visibility	window,	as	shown	in	various	diagrams	throughout	this	book,
represents	the	devices	on	the	network	whose	traffic	you	can	see	with	a	packet
sniffer.

Unfortunately	 for	 us,	 hub-based	 networks	 are	 rare	 because	 of	 the
headaches	 they	 cause	 network	 administrators.	 Since	 only	 one	 device	 can
communicate	 through	 a	 hub	 at	 any	 one	 time,	 a	 connected	 device	 must
compete	 for	 bandwidth	 with	 all	 the	 other	 devices	 trying	 to	 communicate.
When	two	or	more	devices	communicate	at	the	same	time,	packets	collide,
as	 shown	 in	 Figure	 2-3.	 The	 result	 may	 be	 packet	 loss,	 and	 the
communicating	 devices	 may	 compensate	 for	 that	 loss	 by	 retransmitting
packets,	increasing	network	congestion.	As	the	level	of	traffic	and	number	of
collisions	increase,	devices	may	need	to	transmit	a	packet	three	or	four	times,
and	 network	 performance	 decreases	 dramatically.	 It’s	 therefore	 easy	 to
understand	why	most	modern	networks	of	 any	 size	use	 switches.	Although
you’ll	 rarely	 find	hubs	 in	 use	 on	modern	networks,	 you’ll	 occasionally	 run
into	them	on	networks	that	support	legacy	hardware	or	specialized	devices,
such	as	industrial	control	system	(ICS)	networks.



Figure	2-3:	Collisions	occur	on	a	hub	network	when	two	or	more	devices	transmit	at	the	same	time.

The	easiest	way	to	identify	whether	a	hub	is	in	use	in	a	network	is	to	lay
eyes	on	the	server	room	or	networking	closet.	Most	hubs	are	labeled	as	such.
When	all	else	fails,	just	look	in	the	darkest	corner	of	the	server	closet	for	the
network	hardware	with	a	few	inches	of	dust	on	it.

Sniffing	in	a	Switched	Environment
Switches	 are	 the	most	 common	 type	of	 connection	device	used	 in	modern
networks.	 They	 provide	 an	 efficient	 way	 to	 transport	 data	 via	 broadcast,
unicast,	 and	 multicast	 traffic.	 Switches	 allow	 full-duplex	 communication,
meaning	that	machines	can	send	and	receive	data	simultaneously.

Unfortunately	 for	packet	 analysts,	 switches	 add	complexity.	When	you
connect	a	sniffer	to	a	port	on	a	switch,	you	can	see	only	broadcast	traffic	and
the	traffic	transmitted	and	received	by	the	device	the	sniffer	is	 installed	on,
as	shown	in	Figure	2-4.	To	capture	traffic	from	a	target	device	on	a	switched
network,	you	need	to	take	an	additional	step.



Figure	2-4:	The	visibility	window	on	a	switched	network	is	limited	to	the	port	you	are	plugged	into.

There	 are	 four	 primary	 ways	 to	 capture	 this	 traffic:	 port	 mirroring,
hubbing	out,	using	a	tap,	and	ARP	cache	poisoning.

Port	Mirroring

Port	 mirroring,	 or	 port	 spanning,	 is	 perhaps	 the	 easiest	 way	 to	 capture	 the
traffic	from	a	target	device	on	a	switched	network.	In	this	type	of	setup,	you
must	have	access	to	the	command	line	or	web	management	interface	of	the
switch	 on	 which	 the	 target	 computer	 is	 located.	 Also,	 the	 switch	 must
support	 port	 mirroring	 and	 have	 an	 empty	 port	 into	 which	 you	 can	 plug
your	sniffer.

To	enable	port	mirroring,	you	issue	a	command	that	forces	the	switch	to
copy	all	traffic	on	one	port	to	another	port.	For	instance,	to	capture	all	the
traffic	 transmitted	 and	 received	 from	 a	 device	 on	 port	 3	 of	 a	 switch,	 you
could	plug	your	analyzer	into	port	4	and	mirror	port	3	to	port	4.	Figure	2-5
illustrates	port	mirroring.



Figure	2-5:	Port	mirroring	allows	you	to	expand	your	visibility	window	on	a	switched	network.

How	 you	 set	 up	 port	mirroring	 depends	 on	 the	manufacturer	 of	 your
switch.	For	most	enterprise	switches,	you’ll	need	to	log	in	to	a	command	line
interface	and	configure	port	mirroring	using	a	specific	command.	You’ll	find
a	list	of	example	port-mirroring	commands	in	Table	2-1.

Table	2-1:	Commands	Used	to	Enable	Port	Mirroring

Manufacturer Command

Cisco set span <source port> <destination port>

Enterasys set port mirroring create <source port> <destination port>

Nortel port-mirroring mode mirror-port <source port> monitor-port
<destination port>

NOTE

Some	enterprise	switches	provide	web-based	GUIs	that	offer	port	mirroring	as
an	option,	but	these	aren’t	common	and	aren’t	standardized.	However,	if	your
switch	provides	an	effective	way	to	configure	port	mirroring	through	a	GUI,
by	all	means	use	it.	Additionally,	more	small	office	and	home	office	(SOHO)
switches	are	beginning	to	provide	port-mirroring	capabilities,	and	those	are
typically	configured	with	a	GUI.



When	port	mirroring,	be	aware	of	the	throughput	of	the	ports	you	are
mirroring.	Some	switch	manufacturers	allow	you	to	mirror	multiple	ports	to
one	 port,	 functionality	 that	 may	 be	 useful	 when	 analyzing	 the
communication	between	two	or	more	devices	on	a	single	switch.	However,
let’s	consider	what	can	happen	using	some	basic	math.	If	you	have	a	24-port
switch	and	you	mirror	23	full-duplex	100Mbps	ports	to	one	port,	you	have
potentially	4,600Mbps	flowing	to	that	port.	This	is	well	beyond	the	physical
threshold	 of	 a	 single	 port,	 so	 you	 could	 cause	 packet	 loss	 or	 network
slowdowns	if	the	traffic	reaches	a	certain	level.	This	is	sometimes	referred	to
as	 oversubscription.	 In	 these	 situations,	 switches	 have	 been	 known	 to
completely	 drop	 excess	 packets	 or	 even	 “pause”	 their	 internal	 circuitry,
preventing	 communication	 altogether.	 Be	 sure	 that	 you	 don’t	 cause	 such
problems	when	performing	your	capture.

Port	 mirroring	 may	 seem	 like	 an	 attractive,	 low-cost	 solution	 for
enterprise	networks	and	scenarios	in	which	you	need	to	consistently	monitor
specific	 network	 segments,	 such	 as	 in	 network	 security	 monitoring.
However,	 this	 technique	 is	 usually	 not	 reliable	 enough	 for	 such	 an
application.	Especially	at	high	throughput	levels,	port	mirroring	can	provide
inconsistent	results	and	cause	data	loss	that	can	be	hard	to	track	down.	For
such	scenarios,	you	are	advised	to	use	a	tap,	discussed	in	“Using	a	Tap”	on
page	24.

Hubbing	Out

Another	 way	 to	 capture	 the	 traffic	 through	 a	 target	 device	 on	 a	 switched
network	 is	by	hubbing	out.	With	this	 technique,	you	place	 the	target	device
and	your	 analyzer	 system	on	 the	 same	network	 segment	by	plugging	 them
both	directly	 into	a	hub.	Many	people	 think	of	hubbing	out	as	 “cheating,”
but	it’s	really	a	valid	solution	when	you	can’t	perform	port	mirroring	but	still
have	physical	access	to	the	switch	the	target	device	is	plugged	into.

To	hub	out,	all	you	need	is	a	hub	and	a	few	network	cables.	Once	you
have	your	hardware,	connect	it	as	follows:

1.	 Find	the	switch	the	target	device	resides	on	and	unplug	the	target	from
the	network.

2.	 Plug	the	target’s	network	cable	into	your	hub.



3.	 Plug	in	another	cable	that	connects	your	analyzer	to	the	hub.

4.	 Plug	in	a	network	cable	from	your	hub	to	the	network	switch	to	connect
the	hub	to	the	network.

Now	 you	 have	 put	 the	 target	 device	 and	 your	 analyzer	 in	 the	 same
broadcast	domain,	and	all	traffic	from	your	target	device	will	be	broadcast	so
that	the	analyzer	can	capture	those	packets,	as	illustrated	in	Figure	2-6.

Figure	2-6:	Hubbing	out	isolates	your	target	device	and	analyzer.

In	most	situations,	hubbing	out	reduces	the	duplex	of	the	target	device
from	 full	 (bi-directional)	 to	 half	 (one-directional).	While	 this	method	 isn’t
the	cleanest	way	to	capture	packets,	it’s	sometimes	your	only	option	when	a
switch	doesn’t	support	port	mirroring.	But	keep	in	mind	that	your	hub	will
also	require	a	power	connection,	which	can	be	difficult	to	find.

NOTE

As	a	reminder,	it	is	usually	a	nice	gesture	to	alert	the	user	of	the	device	that
you	will	be	unplugging	it,	especially	if	that	user	happens	to	be	the	company
CEO!

FINDING	“TRUE”	HUBS
When	hubbing	out,	be	sure	that	you’re	using	a	true	hub	and	not	a	falsely



labeled	switch.	Several	networking	hardware	vendors	have	a	bad	habit	of
marketing	and	selling	a	device	as	a	“hub”	when	it	actually	functions	as	a
low-level	switch.	If	you	aren’t	working	with	a	proven,	tested	hub,	you’ll
see	only	your	own	traffic,	not	that	of	the	target	device.

When	you	find	something	you	believe	is	a	hub,	test	it	to	make	sure.
The	best	way	to	determine	whether	a	device	is	a	true	hub	is	to	hook	up	a
pair	of	 computers	 to	 it	 and	 see	whether	one	 computer	 can	 sniff	 traffic
between	the	other	computer	and	various	other	devices	on	the	network,
such	as	another	computer	or	a	printer.	If	so,	you’ve	got	a	keeper!

Since	 hubs	 are	 so	 antiquated,	 they’re	 not	 mass-produced	 much
anymore.	It’s	almost	impossible	to	buy	a	true	hub	off	the	shelf,	so	you’ll
need	to	be	creative	in	order	to	find	one.	A	great	source	is	often	a	surplus
auction	held	by	your	local	school	district.	Public	schools	are	required	to
attempt	 to	 auction	 surplus	 items	 before	 disposing	 of	 them,	 and	 they
often	 have	 older	 hardware	 sitting	 around.	 I’ve	 seen	 people	 walk	 away
from	auctions	with	several	hubs	for	less	than	the	cost	of	a	plate	of	white
beans	and	cornbread.	Alternatively,	eBay	can	be	a	good	source	of	hubs,
but	 be	 wary,	 as	 you	 may	 run	 into	 the	 same	 issue	 with	 mislabeled
switches.

Using	a	Tap

Everybody	knows	 the	expression	“Why	have	chicken	when	you	could	have
steak?”	(Or,	if	you	are	from	the	South,	“Why	have	liver	loaf	when	you	could
have	fried	bologna?”)	This	choice	also	applies	to	hubbing	out	versus	using	a
tap.

A	 network	 tap	 is	 a	 hardware	 device	 that	 you	 can	 place	 between	 two
points	 on	 your	 cabling	 system	 to	 capture	 the	 packets	 between	 those	 two
points.	As	with	hubbing	out,	you	place	a	piece	of	hardware	on	the	network
that	allows	you	to	capture	the	packets	you	need.	The	difference	is	that	rather
than	 using	 a	 hub,	 you	 use	 a	 specialized	 piece	 of	 hardware	 designed	 for
network	analysis.

There	 are	 two	 primary	 types	 of	 network	 taps:	 aggregated	 and
nonaggregated.	Both	types	of	taps	sit	between	two	devices	in	order	to	sniff	the
communications.	The	primary	difference	between	 an	 aggregated	 tap	 and	 a
nonaggregated	tap	is	that	the	nonaggregated	tap	has	four	ports,	as	shown	in



Figure	 2-7,	 and	 requires	 separate	 interfaces	 for	 monitoring	 traffic
bidirectionally,	 while	 the	 aggregated	 tap	 has	 only	 three	 ports	 and	 can
monitor	bidirectionally	with	only	a	single	interface.

Figure	2-7:	A	Barracuda	non-aggregated	tap

Taps	also	 typically	require	a	power	connection,	although	some	 include
batteries	that	allow	brief	stints	of	packet	sniffing.

Aggregated	Taps

The	aggregated	tap	is	the	simplest	to	use.	It	has	only	one	physical	monitor
port	for	sniffing	bidirectional	traffic.

To	 capture	 all	 traffic	 to	 and	 from	 a	 single	 computer	 plugged	 into	 a
switch	using	an	aggregated	tap,	follow	these	steps:

1.	 Unplug	the	computer	from	the	switch.

2.	 Plug	one	end	of	a	network	cable	into	the	computer	and	plug	the	other
end	into	the	tap’s	“in”	port.

3.	 Plug	one	end	of	another	network	cable	into	the	tap’s	“out”	port	and
plug	the	other	end	into	the	network	switch.

4.	 Plug	one	end	of	a	final	cable	into	the	tap’s	“monitor”	port	and	plug	the
other	end	into	the	computer	that	is	acting	as	your	sniffer.

The	aggregated	tap	should	be	connected	as	shown	in	Figure	2-8.	At	this
point,	your	sniffer	should	be	capturing	all	traffic	in	and	out	of	the	computer
you’ve	plugged	into	the	tap.



Figure	2-8:	Using	an	aggregated	tap	to	intercept	network	traffic

Nonaggregated	Taps

The	nonaggregated	 tap	 is	 slightly	more	complex	 than	 the	aggregated	 type,
but	it	allows	a	bit	more	flexibility	when	capturing	traffic.	Instead	of	having	a
single	 monitor	 port	 that	 can	 be	 used	 to	 listen	 to	 bidirectional
communication,	 the	 nonaggregated	 type	 has	 two	 monitor	 ports.	 One
monitor	port	is	used	for	sniffing	traffic	in	one	direction	(from	the	computer
connected	to	the	tap),	and	the	other	monitor	port	is	used	for	sniffing	traffic
in	the	other	direction	(to	the	computer	connected	to	the	tap).

To	 capture	 all	 traffic	 to	 and	 from	 a	 single	 computer	 plugged	 into	 a
switch,	follow	these	steps:

1.	 Unplug	the	computer	from	the	switch.

2.	 Plug	one	end	of	a	network	cable	into	the	computer	and	plug	the	other
end	into	the	tap’s	“in”	port.

3.	 Plug	one	end	of	another	network	cable	into	the	tap’s	“out”	port	and
plug	the	other	end	into	the	network	switch.

4.	 Plug	one	end	of	a	third	network	cable	into	the	tap’s	“monitor	A”	port
and	plug	the	other	end	into	one	NIC	on	the	computer	that	is	acting	as
your	sniffer.

5.	 Plug	one	end	of	a	final	cable	into	the	tap’s	“monitor	B”	port	and	plug
the	other	end	into	a	second	NIC	on	the	computer	that	is	acting	as	your



sniffer.

The	nonaggregated	tap	should	be	connected	as	shown	in	Figure	2-9.

Figure	2-9:	Using	a	nonaggregated	tap	to	intercept	network	traffic

While	 these	 examples	may	make	 it	 appear	 as	 though	you	 can	monitor
only	a	 single	device	using	a	 tap,	you	can	actually	monitor	many	devices	by
getting	creative	with	your	placement	of	the	tap.	For	example,	if	you	wanted
to	monitor	all	 the	communication	between	an	entire	network	segment	and
the	Internet,	you	could	place	the	tap	between	the	switch	to	which	all	of	the
other	 devices	 are	 connected	 and	 the	 network’s	 upstream	 router.	 This
placement	 at	 a	 network	 choke	 point	 lets	 you	 collect	 the	 traffic	 you	 desire.
This	strategy	is	commonly	used	in	security	monitoring.

Choosing	a	Network	Tap

Which	type	of	tap	is	better?	In	most	situations,	aggregated	taps	are	preferred
because	 they	require	 less	cabling	and	don’t	need	 two	NICs	on	your	sniffer
computer.	However,	if	you	need	to	capture	a	high	volume	of	traffic	or	care
about	 traffic	 going	 in	 only	 one	 direction,	 a	 nonaggregated	 tap	 is	 a	 better
choice.

You	 can	 purchase	 taps	 of	 all	 sizes,	 ranging	 from	 simple	Ethernet	 taps
that	 run	 about	 $150	 to	 enterprise-grade	 fiber	 optic	 taps	 in	 the	 six-figure
range.	 I’ve	 used	 enterprise-grade	 taps	 from	 Ixia	 (formerly	 Net	 Optics),
Dualcomm,	and	Fluke	Networks	and	have	been	very	happy	with	them,	but



there	are	many	other	great	taps	available	as	well.	If	you’re	using	a	tap	for	an
enterprise	application,	you’ll	want	to	be	sure	the	tap	has	fail-open	capability.
This	 means	 that	 if	 the	 tap	 malfunctions	 or	 dies,	 packets	 will	 still	 pass
through	 it	 and	 network	 connectivity	 for	 the	 tapped	 link	 won’t	 be
interrupted.

ARP	Cache	Poisoning

One	 of	 my	 favorite	 techniques	 for	 tapping	 into	 the	 wire	 is	 ARP	 cache
poisoning.	We’ll	cover	the	ARP	protocol	in	detail	in	Chapter	7,	but	a	brief
explanation	 is	 necessary	 here	 so	 you	 can	 understand	 how	 this	 technique
works.

The	ARP	Process

Recall	 from	Chapter	1	 that	 the	 two	main	 types	of	packet	addressing	are	at
layers	2	and	3	of	the	OSI	model.	These	layer	2	addresses,	or	MAC	addresses,
are	 used	 in	 conjunction	with	whichever	 layer	 3	 addressing	 system	 you	 are
using.	 In	 this	 book,	 in	 accordance	 with	 industry-standard	 terminology,	 I
refer	to	the	layer	3	addressing	system	as	the	IP	addressing	system.

All	devices	on	a	network	communicate	with	each	other	on	layer	3	using
IP	addresses.	Because	switches	operate	on	layer	2	of	the	OSI	model,	they	are
cognizant	of	only	layer	2	MAC	addresses,	so	devices	must	be	able	to	include
this	 information	 in	 packets	 they	 construct.	 When	 a	 MAC	 address	 is	 not
known,	 it	must	be	obtained	using	the	known	layer	3	IP	addresses	so	traffic
can	be	forwarded	to	the	appropriate	device.	This	translation	process	is	done
through	the	layer	2	protocol	ARP.

The	 ARP	 process,	 for	 computers	 connected	 to	 Ethernet	 networks,
begins	 when	 one	 computer	 wishes	 to	 communicate	 with	 another.	 The
transmitting	computer	 first	 checks	 its	ARP	cache	 to	 see	whether	 it	 already
has	 the	 MAC	 address	 associated	 with	 the	 IP	 address	 of	 the	 destination
computer.	 If	 it	 does	 not,	 it	 sends	 an	 ARP	 request	 to	 the	 data	 link	 layer
broadcast	 address	 ff:ff:ff:ff:ff:ff,	 as	 discussed	 in	 Chapter	 1.	 This	 broadcast
packet	 is	 received	by	 every	 computer	on	 that	 particular	Ethernet	 segment.
The	 packet	 basically	 asks,	 “Which	 IP	 address	 owns	 the	 xx:xx:xx:xx:xx:xx
MAC	address?”

Devices	 without	 the	 destination	 computer’s	 IP	 address	 simply	 discard



this	 ARP	 request.	 The	 destination	 machine	 replies	 to	 the	 packet	 with	 its
MAC	 address	 via	 an	 ARP	 reply.	 At	 this	 point,	 the	 original	 transmitting
computer	 now	 has	 the	 data	 link	 layer	 addressing	 information	 it	 needs	 to
communicate	with	the	remote	computer,	and	it	stores	that	information	in	its
ARP	cache	for	fast	retrieval.

How	ARP	Cache	Poisoning	Works

ARP	 cache	 poisoning,	 sometimes	 called	ARP	 spoofing,	 is	 an	 advanced	 form	of
tapping	 into	 the	 wire	 on	 a	 switched	 network.	 It	 works	 by	 sending	 ARP
messages	to	an	Ethernet	switch	or	router	with	fake	MAC	(layer	2)	addresses
in	order	to	intercept	the	traffic	of	another	computer.	Figure	2-10	illustrates
this	setup.

Figure	2-10:	ARP	cache	poisoning	lets	you	intercept	the	traffic	of	your	target	computer.

This	technique	is	commonly	used	by	attackers	to	send	falsely	addressed
packets	to	client	systems	in	order	to	intercept	certain	traffic	or	cause	denial-
of-service	(DoS)	attacks	on	a	target.	However,	it	can	also	be	a	legitimate	way
to	capture	the	packets	of	a	target	machine	on	a	switched	network.

Using	Cain	&	Abel

When	attempting	 to	poison	 the	ARP	cache,	 the	 first	 step	 is	 to	acquire	 the
necessary	tools	and	collect	some	information.	For	our	demonstration,	we’ll
use	the	popular	security	tool	Cain	&	Abel	from	oxid.it	 (http://www.oxid.it/),
which	supports	Windows	systems.	Download	and	install	it	now,	according	to

http://www.oxid.it/


the	directions	on	the	website.

NOTE

When	you	attempt	to	download	Cain	&	Abel,	there	is	a	good	chance	that
antivirus	software	or	your	browser	will	flag	the	software	as	malicious	or	as	a
“hacker	tool.”	This	tool	has	multiple	uses,	including	several	that	could	be
nefarious.	For	our	purposes,	it	poses	no	threat	to	your	system.

Before	 you	 can	 use	 Cain	 &	 Abel,	 you’ll	 need	 to	 collect	 certain
information,	 including	 the	 IP	 address	 of	 your	 analyzer	 system,	 the	 remote
system	 from	 which	 you	 wish	 to	 capture	 the	 traffic,	 and	 the	 router	 from
which	the	remote	system	is	downstream.

When	you	first	open	Cain	&	Abel,	you’ll	notice	a	series	of	tabs	near	the
top	 of	 the	 window.	 (ARP	 cache	 poisoning	 is	 only	 one	 of	 Cain	 &	 Abel’s
features.)	For	our	purposes,	we’ll	be	working	 in	the	Sniffer	 tab.	When	you
click	this	tab,	you	should	see	an	empty	table,	as	shown	in	Figure	2-11.

Figure	2-11:	The	Sniffer	tab	in	the	Cain	&	Abel	main	window

To	 complete	 this	 table,	 you’ll	 need	 to	 activate	 the	 program’s	 built-in
sniffer	and	scan	your	network	for	hosts.	To	do	so,	follow	these	steps:



1.	 Click	the	second	icon	from	the	left	on	the	toolbar,	which	resembles	a
NIC.

2.	 You’ll	be	asked	to	select	the	interface	you	wish	to	sniff.	Choose	the	one
that	is	connected	to	the	network	on	which	you’ll	be	performing	your
ARP	cache	poisoning.	If	this	is	your	first	time	using	Cain	&	Abel,	select
this	interface	and	click	OK.	Otherwise,	if	you’ve	selected	an	interface	in
Cain	&	Abel	before,	your	selection	will	have	been	saved,	and	you’ll	need
to	press	the	NIC	icon	a	second	time	to	select	the	interface.	(Ensure	that
this	button	is	depressed	to	activate	Cain	&	Abel’s	built-in	sniffer.)

3.	 To	build	a	list	of	available	hosts	on	your	network,	click	the	plus	(+)
button.	The	MAC	Address	Scanner	dialog	appears,	as	shown	in	Figure
2-12.	The	All	hosts	in	my	subnet	radio	button	should	be	selected	(or
you	can	specify	an	address	range	if	necessary).	Click	OK	to	continue.

Figure	2-12:	Scanning	for	MAC	addresses	using	the	Cain	&	Abel	network	discovery	tool

Some	Windows	10	users	report	Cain	&	Abel	is	unable	to	determine	the
IP	address	of	their	network	interfaces,	which	prohibits	the	completion	of	this
process.	 If	 you	 have	 this	 problem,	 when	 configuring	 network	 interfaces



you’ll	 see	 that	 the	 IP	address	of	your	 interfaces	 is	0.0.0.0.	To	remedy	 this,
take	the	following	steps:

1.	 If	Cain	&	Abel	is	open,	close	it.

2.	 On	the	desktop	search	bar,	type	ncpa.cpl	to	open	the	Network
Connections	dialog.

3.	 Right-click	the	network	interface	you’ll	be	sniffing	from	and	click
Properties.

4.	 Double-click	Internet	Protocol	Version	4	(TCP/IPv4).

5.	 Click	the	Advanced	button	and	choose	the	DNS	tab.

6.	 Select	the	checkbox	next	to	Use	this	connection’s	DNS	suffix	in
DNS	registration	to	activate	it.

7.	 Click	OK	to	exit	the	open	dialogs	and	relaunch	Cain	&	Abel.

The	grid	should	now	be	filled	with	a	list	of	all	the	hosts	on	your	attached
network,	 along	 with	 their	 MAC	 addresses,	 IP	 addresses,	 and	 vendor
information.	This	 is	 the	 list	 you’ll	work	 from	when	 setting	 up	ARP	 cache
poisoning.

At	the	bottom	of	the	program	window,	you	should	see	a	set	of	tabs	that
will	 take	 you	 to	 other	 windows	 under	 the	 Sniffer	 heading.	Now	 that	 you
have	built	your	host	 list,	you’ll	be	working	from	the	APR	(for	ARP	Poison
Routing)	tab.	Switch	to	the	APR	window	now	by	clicking	the	tab.

Once	 in	 the	 APR	 window,	 you	 are	 presented	 with	 two	 empty	 tables.
After	you’ve	completed	the	setup	steps,	the	upper	table	will	show	the	devices
involved	 in	 your	 ARP	 cache	 poisoning,	 and	 the	 lower	 one	 will	 show	 all
communication	between	your	poisoned	machines.

To	set	up	your	poisoning,	follow	these	steps:

1.	 Click	in	the	blank	area	in	the	upper	portion	of	the	screen.	Then	click
the	plus	(+)	button	on	the	program’s	standard	toolbar.

2.	 The	window	that	appears	has	two	selection	panes.	On	the	left	side,
you’ll	see	a	list	of	all	available	hosts	on	your	network.	If	you	click	the	IP
address	of	the	target	computer,	the	pane	on	the	right	will	show	a	list	of
all	hosts	in	the	network,	except	for	the	target	machine’s	IP	address.



3.	 In	the	right	pane,	click	the	IP	address	of	the	router	that	is	directly
upstream	from	the	target	machine,	as	shown	in	Figure	2-13,	and	click
OK.	The	IP	addresses	of	both	devices	should	now	be	listed	in	the	upper
table	in	the	main	application	window.

4.	 To	complete	the	process,	click	the	yellow-and-black	radiation	symbol
on	the	standard	toolbar.	This	will	activate	Cain	&	Abel’s	ARP	cache
poisoning	features	and	allow	your	analyzing	system	to	be	the
middleman	for	all	communications	between	the	target	system	and	its
upstream	router.

Figure	2-13:	Selecting	the	devices	for	which	you	wish	to	enable	ARP	cache	poisoning

You	 should	 now	 be	 able	 to	 fire	 up	 your	 packet	 sniffer	 and	 begin	 the
analysis	process.	When	you	have	finished	capturing	traffic,	simply	click	the
yellow-and-black	radiation	symbol	again	to	stop	ARP	cache	poisoning.

A	Word	of	Caution	About	ARP	Cache	Poisoning

A	final	note	on	ARP	cache	poisoning:	you	should	be	very	aware	of	the	roles
of	the	systems	for	which	you	implement	this	process.	For	instance,	don’t	use
this	technique	when	the	target	device	 is	something	with	very	high	network



utilization,	such	as	a	file	server	with	a	1Gbps	link	to	the	network	(especially
if	your	analyzer	system	provides	only	a	100Mbps	link).

When	you	reroute	traffic	using	the	technique	shown	in	this	example,	all
traffic	 transmitted	and	 received	by	 the	 target	 system	must	 first	go	 through
your	analyzer	system,	therefore	making	your	analyzer	the	bottleneck	in	the
communication	process.	This	 rerouting	 can	have	 a	DoS-type	 effect	on	 the
machine	you	are	analyzing,	resulting	in	degraded	network	performance	and
faulty	 analysis	 data.	 Traffic	 congestion	 can	 also	 prohibit	 SSL-based
communication	from	working	as	expected.

NOTE

You	can	avoid	having	all	the	traffic	go	through	your	analyzer	system	by	using
a	feature	called	asymmetric	routing.	For	more	information	about	this
technique,	see	the	oxid.it	user	manual
(http://www.oxid.it/ca_um/topics/apr.htm).

Sniffing	in	a	Routed	Environment
All	 the	 techniques	 for	 tapping	 into	 the	 wire	 on	 a	 switched	 network	 are
available	 on	 routed	 networks	 as	 well.	 The	 only	major	 consideration	 when
dealing	 with	 routed	 environments	 is	 the	 importance	 of	 sniffer	 placement
when	 you	 are	 troubleshooting	 a	 problem	 that	 spans	 multiple	 network
segments.

As	you’ve	learned,	a	device’s	broadcast	domain	extends	until	it	reaches	a
router,	at	which	point	the	traffic	is	handed	off	to	the	next	upstream	router.
When	 data	 must	 traverse	 multiple	 routers,	 it’s	 important	 to	 analyze	 the
traffic	on	all	sides	of	the	router.

For	 example,	 consider	 the	problem	you	might	 encounter	 in	 a	network
with	several	segments	connected	via	multiple	routers.	In	this	network,	each
segment	communicates	with	an	upstream	segment	to	store	and	retrieve	data.
In	 Figure	 2-14,	 the	 problem	 we’re	 trying	 to	 solve	 is	 that	 a	 downstream
subnet,	network	D,	can’t	communicate	with	any	devices	on	network	A.

http://www.oxid.it/ca_um/topics/apr.htm


Figure	2-14:	A	computer	on	network	D	can’t	communicate	with	computers	on	network	A.

If	you	 sniff	 the	 traffic	of	 a	device	on	network	D	that	 is	having	 trouble
communicating	 with	 devices	 on	 other	 networks,	 you	 may	 clearly	 see	 data
being	 transmitted	 to	 another	 segment,	but	 you	might	not	 see	data	 coming
back.	 If	 you	 rethink	 the	 positioning	 of	 your	 sniffer	 and	 begin	 sniffing	 the
traffic	 in	 the	 next	 upstream	 network	 segment	 (network	 B),	 you’ll	 have	 a
clearer	picture	of	what	is	happening.	At	this	point,	you	might	find	that	traffic
is	dropped	or	routed	incorrectly	by	network	B’s	router.	Eventually,	this	leads
you	 to	 a	 router	 configuration	 problem	 that,	 when	 corrected,	 solves	 your
larger	dilemma.	Although	this	scenario	is	a	bit	broad,	the	moral	of	the	story
is	 that	when	dealing	with	multiple	routers	and	network	segments,	you	may
need	to	move	your	sniffer	around	a	bit	to	get	the	entire	picture	and	pinpoint
the	problem.



NETWORK	MAPS
In	 our	 discussion	 of	 network	 placement,	 we	 have	 examined	 several
network	maps.	 A	network	map,	 or	network	 diagram,	 shows	 all	 technical
resources	on	a	network	and	how	they	are	connected.

There	 is	no	better	way	to	determine	the	placement	of	your	packet
sniffer	 than	 to	 visualize	 the	 network.	 If	 you	 have	 a	 network	 map
available,	 keep	 it	 handy,	 as	 it	 will	 be	 a	 valuable	 asset	 in	 the
troubleshooting	 and	 analysis	 process.	 You	 may	 even	 want	 to	 make	 a
detailed	map	of	your	own	network.	Remember	that	sometimes	half	the
battle	in	troubleshooting	is	ensuring	you	are	collecting	the	right	data.

Sniffer	Placement	in	Practice
We	 have	 looked	 at	 four	 ways	 to	 capture	 network	 traffic	 in	 a	 switched
environment.	 We	 can	 add	 one	 more	 if	 we	 simply	 consider	 installing	 a
packet-sniffing	application	on	a	single	device	from	which	we	want	to	capture
traffic	 (the	 direct	 install	 method).	 Given	 these	 five	methods,	 it	 can	 be	 a	 bit
confusing	 to	 determine	 which	 one	 is	 the	 most	 appropriate.	 Table	 2-2
provides	some	general	guidelines	for	each	method.

As	analysts,	we	need	to	be	as	stealthy	as	possible.	In	a	perfect	world,	we
collect	 the	 data	 we	 need	 without	 leaving	 a	 footprint.	 Just	 as	 forensic
investigators	 don’t	 want	 to	 contaminate	 a	 crime	 scene,	 we	 don’t	 want	 to
contaminate	our	captured	network	traffic.

Table	2-2:	Guidelines	for	Packet	Sniffing	in	a	Switched	Environment

Technique Guidelines

Port
mirroring

•					Leaves	no	network	footprint	and	generates	no	additional
packets.

•					Can	be	configured	without	taking	the	client	offline,	which
is	convenient	when	mirroring	router	or	server	ports.

•					Requires	processing	resources	from	the	switch	and	can	be
inconsistent	at	higher	throughput	levels.

Hubbing
out

•					Works	when	you	are	not	concerned	about	taking	the	host
temporarily	offline.



out temporarily	offline.

•					Ineffective	when	you	must	capture	traffic	from	multiple
hosts,	as	collisions	and	dropped	packets	are	likely.

•					Can	result	in	lost	packets	on	modern	100/1000Mbps	hosts
because	most	true	hubs	are	only	10Mbps.

Using	a	tap •					Ideal	when	you	are	not	concerned	about	taking	the	host
temporarily	offline.

•					The	only	option	when	you	need	to	sniff	traffic	from	a
fiber-optic	connection.

•					Preferred	solution	for	enterprise	packet	capture	and
continuous	monitoring	because	taps	are	reliable	and	can
scale	to	high	throughput	links.

•					Since	taps	are	made	for	the	task	at	hand	and	are	up	to	par
with	modern	network	speeds,	this	method	is	superior	to
hubbing	out.

•					Can	be	expensive,	especially	at	scale,	and	so	may	be	cost
prohibitive.

ARP	cache
poisoning

•					Considered	very	sloppy,	as	it	involves	injecting	packets
onto	the	network	to	reroute	traffic	through	your	sniffer.

•					When	port	mirroring	is	not	an	option,	can	be	effective	for
quickly	capturing	traffic	from	a	device	without	taking	it
offline.

•					Requires	great	care	so	as	to	not	impact	network
functionality.

Direct
install

•					Usually	not	recommended	because	if	there	is	an	issue	with
a	host,	that	issue	could	cause	packets	to	be	dropped	or
manipulated	in	such	a	way	that	they	are	not	represented
accurately.

•					The	NIC	of	the	host	doesn’t	need	to	be	in	promiscuous
mode.

•					Best	for	test	environments,	examining/baselining
performance,	and	examining	capture	files	created
elsewhere.



As	we	step	through	practical	scenarios	in	later	chapters,	we’ll	discuss	the
best	ways	to	capture	the	data	we	require	on	a	case-by-case	basis.	For	the	time
being,	the	flowchart	in	Figure	2-15	should	help	you	choose	the	best	method
for	 capturing	 traffic	 in	 a	 given	 situation.	 The	 chart	 takes	 different	 factors
into	consideration,	starting	with	whether	you	are	capturing	packets	at	home
or	at	work.	Remember	that	this	flowchart	is	simply	a	general	reference	and
doesn’t	cover	every	possible	scenario	in	which	you	might	tap	into	the	wire.

Figure	2-15:	A	diagram	to	help	determine	which	method	is	best	for	tapping	into	the	wire



3
INTRODUCTION	TO	WIRESHARK

As	 mentioned	 in	 Chapter	 1,	 several	 packet-sniffing
applications	 are	 available	 for	 performing	 network
analysis,	 but	 we’ll	 focus	mostly	 on	Wireshark	 in	 this
book.	This	chapter	introduces	Wireshark.

A	Brief	History	of	Wireshark

Wireshark	 has	 a	 very	 rich	 history.	 Gerald	 Combs,	 a	 computer	 science
graduate	of	the	University	of	Missouri	at	Kansas	City,	originally	developed	it
out	 of	 necessity.	The	 first	 version	of	Combs’s	 application,	 called	Ethereal,
was	released	in	1998	under	the	GNU	Public	License	(GPL).

Eight	years	after	releasing	Ethereal,	Combs	left	his	job	to	pursue	other
career	opportunities.	Unfortunately,	his	employer	at	that	time	had	full	rights
to	 the	Ethereal	 trademarks,	 and	Combs	was	unable	 to	 reach	an	 agreement
that	would	allow	him	to	control	the	Ethereal	brand.	Instead,	Combs	and	the
rest	 of	 the	 development	 team	 rebranded	 the	 project	 as	Wireshark	 in	mid-
2006.

Wireshark	 has	 grown	 dramatically	 in	 popularity,	 and	 its	 collaborative
development	 team	 now	 boasts	 more	 than	 500	 contributors.	 The	 program



that	exists	under	the	Ethereal	name	is	no	longer	being	developed.

The	Benefits	of	Wireshark
Wireshark	 offers	 several	 benefits	 that	make	 it	 appealing	 for	 everyday	 use.
Aimed	at	both	the	up-and-coming	and	the	expert	packet	analyst,	 it	offers	a
variety	of	features	to	entice	each.	Let’s	examine	Wireshark	according	to	the
criteria	defined	in	Chapter	1	for	selecting	a	packet-sniffing	tool.

Supported	 protocols	 	 	Wireshark	 excels	 in	 the	 number	 of	 protocols
that	it	supports—more	than	1,000	as	of	this	writing.	These	range	from
common	 ones	 like	 IP	 and	 DHCP	 to	 more	 advanced	 proprietary
protocols	 like	 DNP3	 and	 BitTorrent.	 And	 because	 Wireshark	 is
developed	under	an	open	source	model,	new	protocol	support	is	added
with	each	update.

NOTE

In	the	unlikely	event	that	Wireshark	doesn’t	support	a	protocol	you	need,	you
can	code	that	support	yourself.	Then	you	can	submit	your	code	to	the
Wireshark	developers	for	consideration	for	inclusion	in	the	application.	You
can	learn	about	what	is	required	to	contribute	code	to	the	Wireshark	project	at
https://www.wireshark.org/develop.html.

User-friendliness	 	 	 The	Wireshark	 interface	 is	 one	 of	 the	 easiest	 to
understand	 of	 any	 packet-sniffing	 application.	 It	 is	 GUI	 based,	 with
clearly	 written	 context	 menus	 and	 a	 straightforward	 layout.	 It	 also
provides	 several	 features	 designed	 to	 enhance	 usability,	 such	 as
protocol-based	 color	 coding	 and	 detailed	 graphical	 representations	 of
raw	data.	Unlike	 some	of	 the	more	 complicated	 command	 line–driven
alternatives,	like	tcpdump,	the	Wireshark	GUI	is	accessible	to	those	just
entering	the	world	of	packet	analysis.
Cost	 	 	 Since	 it’s	 open	 source	 and	 released	 under	 the	 GNU	 Public
License	 (GPL),	Wireshark’s	 pricing	 can’t	 be	 beat:	 it’s	 absolutely	 free.
You	 can	 download	 and	 use	 Wireshark	 for	 any	 purpose,	 whether
personal	or	commercial.

https://www.wireshark.org/develop.html


NOTE

Although	Wireshark	may	be	free,	some	people	have	made	the	mistake	of
paying	for	it	by	accident.	If	you	search	for	packet	sniffers	on	eBay,	you	may	be
surprised	by	how	many	people	would	love	to	sell	you	a	“professional	enterprise
license”	for	Wireshark	for	the	low,	low	price	of	$39.95.	If	you	decide	you	really
want	to	buy	it,	give	me	a	call,	and	we	can	talk	about	some	oceanfront	property
in	Kentucky	I	have	for	sale!

Program	support	 	 	A	software	package’s	 level	of	support	can	make	or
break	 it.	 Freely	 distributed	 software	 such	 as	Wireshark	may	not	 come
with	any	formal	support,	so	the	open	source	community	often	relies	on
its	 user	 base	 to	 provide	 assistance.	 Luckily	 for	 us,	 the	 Wireshark
community	 is	 one	of	 the	most	 active	 of	 any	open	 source	project.	The
Wireshark	website	 links	directly	 to	several	 forms	of	 support,	 including
online	 documentation;	 a	 wiki;	 FAQs;	 and	 a	 place	 to	 sign	 up	 for	 the
Wireshark	mailing	 list,	 which	 is	monitored	 by	most	 of	 the	 program’s
top	 developers.	 Paid	 support	 for	 Wireshark	 is	 also	 available	 from
Riverbed	Technology.
Source	 code	 access	 	 	Wireshark	 is	 open	 source	 software,	 so	 you	 can
access	 the	 code	 at	 any	 time.	 This	 can	 be	 useful	 for	 troubleshooting
application	 issues,	 understanding	 how	 protocol	 dissectors	 work,	 or
making	your	own	contributions.
Operating	 system	 support	 	 	 Wireshark	 supports	 all	 major	 modern
operating	 systems,	 including	 Windows,	 Linux-based,	 and	 OS	 X
platforms.	You	can	view	a	complete	list	of	supported	operating	systems
on	the	Wireshark	home	page.

Installing	Wireshark
The	Wireshark	 installation	process	 is	 surprisingly	 simple.	However,	before
you	 install	 Wireshark,	 make	 sure	 that	 your	 system	 meets	 the	 following
requirements:

•					Any	modern	32-bit	x86	or	64-bit	CPU
•					400MB	available	RAM,	but	more	for	larger	capture	files



•					At	least	300MB	of	available	storage	space,	plus	space	for	capture	files
•					NIC	that	supports	promiscuous	mode
•					WinPcap/libpcap	capture	driver

The	 WinPcap	 capture	 driver	 is	 the	 Windows	 implementation	 of	 the
pcap	packet-capturing	application	programming	interface	(API).	Simply	put,
this	driver	interacts	with	your	operating	system	to	capture	raw	packet	data,
apply	filters,	and	switch	the	NIC	in	and	out	of	promiscuous	mode.

Although	 you	 can	 download	 WinPcap	 separately	 (from
http://www.winpcap.org/),	 it	 is	 typically	 better	 to	 install	WinPcap	 from	 the
Wireshark	 installation	 package,	 because	 the	 included	 version	 of	WinPcap
has	been	tested	to	work	with	Wireshark.

Installing	on	Windows	Systems

The	current	version	of	Wireshark	is	tested	to	support	versions	of	Windows
that	are	still	within	their	extended	support	lifetime.	As	of	the	writing	of	this
book,	that	encompasses	Windows	Vista;	Windows	7;	Windows	8;	Windows
10;	and	Windows	Servers	2003,	2008,	and	2012.	While	Wireshark	will	often
work	on	other	versions	of	Windows	(like	Windows	XP),	those	versions	are
not	officially	supported.

The	 first	 step	when	 installing	Wireshark	on	Windows	 is	 to	obtain	 the
latest	 installation	 build	 from	 the	 official	 Wireshark	 web	 page,
http://www.wireshark.org/.	Navigate	 to	 the	Download	Wireshark	 section	on
the	 website	 and	 choose	 a	 release	 mirror.	 Once	 you’ve	 downloaded	 the
package,	follow	these	steps:

1.	 Double-click	the	.exe	file	to	begin	installation	and	then	click	Next	in	the
introductory	window.

2.	 Read	the	licensing	agreement	and	click	I	Agree	if	you	agree.

3.	 Select	the	components	of	Wireshark	you	wish	to	install,	as	shown	in
Figure	3-1.	For	our	purposes,	you	can	accept	the	defaults	by	clicking
Next.

http://www.winpcap.org/
http://www.wireshark.org/


Figure	3-1:	Choosing	the	Wireshark	components	you	wish	to	install

4.	 Click	Next	in	the	Additional	Tasks	window.

5.	 Select	the	location	where	you	wish	to	install	Wireshark	and	click	Next.

6.	 When	the	dialog	asks	whether	you	want	to	install	WinPcap,	first	make
sure	the	Install	WinPcap	box	is	checked,	as	shown	in	Figure	3-2.	Then
click	Install.	The	installation	process	should	begin.

7.	 About	halfway	through	the	Wireshark	installation,	the	WinPcap
installation	should	start.	When	it	does,	click	Next	in	the	introductory
window,	read	the	licensing	agreement,	and	click	I	Agree.

8.	 You’ll	be	given	the	option	to	install	USBPcap,	a	utility	for	collecting
data	from	USB	devices.	Select	the	appropriate	check	box	if	you	wish	to
do	so	and	click	Next.



Figure	3-2:	Selecting	the	option	to	install	the	WinPcap	driver

9.	 WinPcap	and,	if	you	selected	it,	USBPcap	should	install	on	your
computer.	After	this	installation	is	complete,	click	Finish.

10.	 Wireshark	should	complete	its	installation.	When	it’s	finished,	click
Next.

11.	 In	the	installation	confirmation	window,	click	Finish.

Installing	on	Linux	Systems

Wireshark	works	on	most	modern	Unix-based	platforms.	It	can	be	installed
either	 by	 using	 the	 distributions	 package	 manager	 of	 choice	 or	 by
downloading	and	installing	the	package	appropriate	for	your	distribution.	It
isn’t	realistic	to	cover	installation	procedures	for	everyone,	so	we’ll	just	look
at	a	few.

Typically,	 for	 system-wide	 software,	 root	 access	 is	 a	 requirement.
However,	 local	 software	 installations	 compiled	 from	 source	 can	 usually	 be
installed	without	root	access.



RPM-Based	Systems

If	 you’re	 using	Red	Hat	Linux	 or	 a	 distribution	based	on	 it,	 like	CentOS,
then	 it’s	 likely	 the	OS	has	 the	Yum	package	management	 tool	 installed	by
default.	If	that’s	the	case,	you	may	be	able	to	install	Wireshark	the	quick	way
by	pulling	it	from	the	distribution’s	software	repository.	To	do	this,	open	a
console	window	and	enter	the	following	command:

$ sudo yum install wireshark

If	 any	dependencies	 are	needed,	 you’ll	 be	prompted	 to	 install	 them.	 If
everything	completes	successfully,	then	you	should	be	able	to	run	Wireshark
from	the	command	line	and	access	it	via	the	GUI.

DEB-Based	Systems

Most	DEB-based	distributions,	such	as	Debian	or	Ubuntu,	include	the	APT
package	management	 tool,	which	allows	you	 to	 install	Wireshark	 from	 the
OS	software	repository.	To	install	Wireshark	with	this	tool,	open	a	console
window	and	enter	the	following:

$ sudo apt-get install wireshark wireshark-qt

Once	again,	you’ll	be	prompted	to	install	any	required	dependencies	to
complete	the	installation.

Compiling	from	Source

Due	to	changes	in	operation	system	architecture	and	Wireshark	features,	the
instructions	 for	compiling	Wireshark	from	source	might	change	over	time.
That’s	one	 reason	 it’s	 recommended	 to	use	your	operating	 system	package
manager	 to	 perform	 the	 installation.	 However,	 if	 your	 Linux	 distribution
doesn’t	 use	 an	 automated	 package	management	 software	 or	 you	 require	 a
specialized	installation,	Wireshark	can	be	installed	manually	by	compiling	it
from	source.	To	do	so,	complete	the	following	steps:

1.	 Download	the	source	package	from	the	Wireshark	web	page.

2.	 Extract	the	archive	by	entering	the	following	(substituting	the	filename
of	your	downloaded	package	as	appropriate):



$ tar –jxvf <file_name_here>.tar.bz2

3.	 Before	configuring	and	installing	Wireshark,	a	few	dependencies	may
be	required	depending	on	your	chosen	Linux	flavor.	For	example,
Ubuntu	14.04	requires	the	installation	of	a	few	other	packages	for
Wireshark	to	work.	These	can	be	installed	by	issuing	the	following
command	(you’ll	need	to	do	this	as	a	root-level	user	or	by	invoking	sudo
before	the	command):

$ sudo apt-get install pkg-config bison flex qt5-default libgtk-3-dev libpcap-
dev qttools5-dev-tools

4.	 After	installing	prerequisites,	navigate	to	the	directory	where	the
Wireshark	files	were	extracted.

5.	 Configure	the	source	so	that	it	will	build	correctly	for	your	distribution
of	Linux	by	using	the	command	./configure.	If	you	wish	to	deviate
from	the	default	installation	options,	you	can	specify	those	options	at
this	point	in	the	installation.	If	any	dependencies	are	missing,	you’ll
most	likely	receive	an	error.	You	must	install	and	configure	those
dependencies	before	proceeding.	If	configuration	is	successful,	you
should	see	a	message	noting	success,	as	shown	in	Figure	3-3.



Figure	3-3:	When	the	./configure	command	is	successful,	a	message	is	displayed	with	the
selected	configurations.

6.	 Enter	the	make	command	to	build	the	source	into	a	binary.

7.	 Initiate	the	final	installation	with	sudo make install.

8.	 Run	sudo/sbin/ldconfig	to	complete	the	installation.

NOTE



If	you	run	into	an	error	following	these	steps,	you	may	have	to	install	an
additional	package.

Installing	on	OS	X	Systems

To	install	Wireshark	on	OS	X,	complete	these	steps:

1.	 Download	the	OS	X	package	from	the	Wireshark	web	page.

2.	 Run	the	installation	utility	and	proceed	through	its	steps.	Once	you’ve
accepted	the	required	end	user	license	agreement,	you’ll	have	the	option
to	select	the	installation	location.

3.	 Complete	the	installation	wizard.

Wireshark	Fundamentals
Once	you’ve	successfully	installed	Wireshark	on	your	system,	you	can	begin
to	 familiarize	 yourself	 with	 it.	 Now	 you	 finally	 get	 to	 open	 your	 fully
functioning	packet	sniffer	and	see	.	.	.	absolutely	nothing!

Okay,	 so	Wireshark	 isn’t	 very	 interesting	 when	 you	 first	 open	 it.	 For
things	to	really	get	exciting,	you	need	to	get	some	data.

Your	First	Packet	Capture

To	get	packet	data	into	Wireshark,	you’ll	perform	your	first	packet	capture.
You	may	be	thinking,	“How	am	I	going	to	capture	packets	when	nothing	is
wrong	on	the	network?”

First,	 there	 is	 always	 something	 wrong	 on	 the	 network.	 If	 you	 don’t
believe	me,	then	go	ahead	and	send	an	email	to	all	of	your	network	users	and
let	them	know	that	everything	is	working	perfectly.

Secondly,	there	doesn’t	need	to	be	something	wrong	in	order	for	you	to
perform	 packet	 analysis.	 In	 fact,	 most	 packet	 analysts	 spend	 more	 time
analyzing	 problem-free	 traffic	 than	 traffic	 that	 they	 are	 troubleshooting.
After	 all,	 you	 need	 a	 baseline	 for	 comparison	 to	 effectively	 troubleshoot
network	 traffic.	 For	 example,	 if	 you	 ever	 hope	 to	 solve	 a	 problem	 with
DHCP	 by	 analyzing	 its	 traffic,	 you	 must	 understand	 what	 the	 flow	 of



working	DHCP	traffic	looks	like.
More	 broadly,	 to	 find	 anomalies	 in	 daily	 network	 activity,	 you	 must

know	what	normal	daily	network	activity	 looks	like.	When	your	network	is
running	 smoothly,	 your	 observations	 become	 a	 baseline	 representing	what
traffic	looks	like	in	a	normal	state.

So,	let’s	capture	some	packets!

1.	 Open	Wireshark.

2.	 From	the	main	drop-down	menu,	select	Capture	and	then	Options.
You	should	see	a	dialog	listing	the	various	interfaces	that	can	be	used	to
capture	packets,	along	with	some	basic	information	about	each	one
(Figure	3-4).	Take	note	of	the	Traffic	heading,	which	shows	a	line
graph	indicating	the	amount	of	traffic	currently	passing	through	that
interface.	Peaks	on	a	line	tell	you	that	you	are	actually	capturing
packets.	If	you	aren’t,	the	line	will	be	flat.	You	can	also	expand	each
interface	by	clicking	the	arrow	to	the	left	of	it	to	see	the	addressing
information,	such	as	the	MAC	address	or	IP	address,	tied	to	it.

3.	 Click	the	interface	you	wish	to	use	and	click	Start.	Data	should	begin
filling	the	window.

4.	 Wait	about	a	minute	or	so,	and	when	you	are	ready	to	stop	the	capture
and	view	your	data,	click	the	Stop	button	from	the	Capture	drop-down
menu.

Figure	3-4:	Selecting	an	interface	on	which	to	perform	your	packet	capture



Once	you	have	completed	these	steps	and	finished	the	capture	process,
the	Wireshark	main	window	should	be	alive	with	data.	As	a	matter	of	 fact,
you	might	be	overwhelmed	by	the	amount	of	data	that	appears,	but	it	will	all
start	to	make	sense	quickly	as	we	break	down	the	main	window	of	Wireshark
one	piece	at	a	time.

Wireshark’s	Main	Window

You’ll	 spend	 most	 of	 your	 time	 in	 the	 Wireshark	 main	 window.	 This	 is
where	all	of	 the	packets	you	capture	are	displayed	and	broken	down	 into	a
more	understandable	 format.	Using	 the	packet	capture	you	 just	made,	 let’s
take	a	look	at	Wireshark’s	main	window,	shown	in	Figure	3-5.

Figure	3-5:	The	Wireshark	main	window	uses	a	three-pane	design.

The	three	panes	in	the	main	window—Packet	List,	Packet	Details,	and
Packet	 Bytes	 from	 top	 to	 bottom—depend	 on	 one	 another.	 To	 view	 the
details	 of	 an	 individual	 packet	 in	 the	 Packet	 Details	 pane,	 you	 must	 first
select	it	in	the	Packet	List	pane.	When	you	select	a	portion	of	the	packet	in
the	 Packet	 Details	 pane,	 the	 Packet	 Bytes	 pane	 displays	 the	 bytes	 that
correspond	with	that	portion.



NOTE

Notice	that	Figure	3-5	lists	a	few	different	protocols	in	the	Packet	List	pane.
There	is	no	visual	separation	of	protocols	on	different	layers	(other	than	via
color	coding);	all	packets	are	shown	as	they	are	received	on	the	wire.

Here’s	what	each	pane	contains:
Packet	List			The	top	pane	displays	a	table	containing	all	packets	in	the
current	capture	 file.	 It	has	columns	containing	the	packet	number,	 the
relative	time	the	packet	was	captured,	the	source	and	destination	of	the
packet,	 the	 packet’s	 protocol,	 and	 some	 general	 information	 found	 in
the	packet.

NOTE

When	I	refer	to	traffic,	I’m	referring	to	all	packets	displayed	in	the	Packet
List	pane.	When	I	refer	to	DNS	traffic	specifically,	I	mean	the	DNS	protocol
packets	in	the	Packet	List	pane.

Packet	 Details	 	 	 The	 middle	 pane	 contains	 a	 hierarchical	 display	 of
information	about	a	single	packet	and	can	be	collapsed	or	expanded	to
show	all	of	the	information	collected	about	the	individual	packet.
Packet	Bytes			The	lower	pane—perhaps	the	most	confusing—displays
a	packet	in	its	raw,	unprocessed	form;	that	is,	 it	shows	what	the	packet
looks	 like	 as	 it	 travels	 across	 the	 wire.	 This	 is	 raw	 information	 with
nothing	 warm	 or	 fuzzy	 to	 make	 it	 easier	 to	 follow.	 We’ll	 discuss
methods	for	interpreting	this	type	of	data	in	Appendix	B.

Wireshark	Preferences

Wireshark	 has	 several	 preferences	 that	 can	 be	 customized	 to	 meet	 your
needs.	To	access	Wireshark’s	preferences,	select	Edit	 from	the	main	drop-
down	menu	and	click	Preferences.	You’ll	see	the	Preferences	dialog,	which
contains	several	customizable	options,	as	shown	in	Figure	3-6.

Wireshark’s	 preferences	 are	 divided	 into	 six	 major	 sections	 plus	 an
Advanced	section:



Appearance	 	 	 These	 preferences	 determine	 how	Wireshark	 presents
data.	 You	 can	 change	 most	 options	 here	 according	 to	 your	 personal
preferences,	 including	whether	 to	save	window	positions,	 the	 layout	of
the	three	main	panes,	the	placement	of	the	scroll	bar,	the	placement	of
the	 Packet	 List	 pane	 columns,	 the	 fonts	 used	 to	 display	 the	 captured
data,	and	the	background	and	foreground	colors.

Figure	3-6:	You	can	customize	Wireshark	using	the	Preferences	dialog	options.

Capture			These	preferences	allow	you	to	specify	options	related	to	the
way	 packets	 are	 captured,	 including	 your	 default	 capture	 interface,
whether	to	use	promiscuous	mode	by	default,	and	whether	to	update	the
Packet	List	pane	in	real	time.
Filter	Expressions			Later	we	will	discuss	how	Wireshark	allows	you	to
filter	 traffic	 based	 on	 specific	 criteria.	This	 section	 of	 the	 Preferences
dialog	allows	you	to	create	and	manage	those	filters.
Name	 Resolution	 	 	 Through	 these	 preferences,	 you	 can	 activate
features	 of	 Wireshark	 that	 allow	 it	 to	 resolve	 addresses	 into	 more
recognizable	 names	 (including	 MAC,	 network,	 and	 transport	 name



resolution)	 and	 specify	 the	 maximum	 number	 of	 concurrent	 name
resolution	requests.
Protocols			This	section	allows	you	to	manipulate	options	related	to	the
capture	 and	 display	 of	 the	 various	 packets	 Wireshark	 is	 capable	 of
decoding.	 Not	 every	 protocol	 has	 configurable	 preferences,	 but	 some
have	several	options	that	can	be	changed.	These	options	are	best	left	at
their	defaults	unless	you	have	a	specific	reason	to	change	them.
Statistics	 	 	 This	 section	 provides	 a	 few	 configurable	 options	 for
Wireshark’s	statistical	features,	which	will	be	covered	in	more	depth	in
Chapter	5.
Advanced	 	 	 Settings	 that	 don’t	 fit	 neatly	 into	 any	 of	 the	 previous
categories	 can	 be	 found	 here.	 Editing	 these	 settings	 is	 something
typically	only	done	by	Wireshark	power	users.

Packet	Color	Coding

If	you	are	anything	like	me,	you	enjoy	shiny	objects	and	pretty	colors.	If	so,
you	 probably	 got	 excited	 when	 you	 saw	 all	 those	 different	 colors	 in	 the
Packet	List	pane,	as	in	the	example	in	Figure	3-7	(well,	the	figure	is	in	black
and	white	if	you’re	reading	this	book	in	print,	but	you	get	the	idea).	It	may
seem	as	 if	 these	colors	are	 randomly	assigned	 to	each	packet,	but	 this	 isn’t
the	case.

Figure	3-7:	Wireshark’s	color	coding	allows	for	quick	protocol	identification.

Each	packet	 is	displayed	 in	a	certain	color	 for	a	 reason.	The	color	can
reflect	the	packet’s	protocol	and	specific	field	values.	For	example,	all	UDP
traffic	 is	 blue	 and	 all	HTTP	 traffic	 is	 green	 by	 default.	The	 color	 coding
allows	 you	 to	 quickly	 differentiate	 between	 various	 protocols	 so	 that	 you
don’t	need	to	read	the	protocol	field	in	the	Packet	List	pane	for	every	packet.
You’ll	 find	 that	 this	 greatly	 speeds	up	 the	 time	 it	 takes	 to	browse	 through
large	capture	files.



Wireshark	 makes	 it	 easy	 to	 see	 which	 colors	 are	 assigned	 to	 each
protocol	through	the	Coloring	Rules	window,	shown	in	Figure	3-8.	To	open
this	 window,	 select	 View	 from	 the	 main	 drop-down	 menu	 and	 click
Coloring	Rules.

Figure	3-8:	The	Coloring	Rules	window	lets	you	view	and	modify	the	coloring	of	packets.

Coloring	rules	are	based	on	Wireshark	filters,	which	we	will	 look	at	 in
Chapter	4.	Using	these	 filters,	you	can	define	your	own	coloring	rules	and
modify	existing	ones.	For	example,	to	change	the	background	color	used	for
HTTP	traffic	from	the	default	green	to	lavender,	follow	these	steps:

1.	 Open	Wireshark	and	access	the	Coloring	Rules	window	(View	▶
Coloring	Rules).

2.	 Find	the	HTTP	coloring	rule	in	the	coloring	rules	list	and	select	it	by
clicking	it	once.

3.	 You’ll	see	the	foreground	and	background	colors	at	the	bottom	of	the
screen,	as	shown	in	Figure	3-9.



Figure	3-9:	When	editing	a	color	filter,	you	can	modify	both	the	foreground	and	background
colors.

4.	 Click	the	Background	button.

5.	 Select	the	color	you	wish	to	use	on	the	color	wheel	and	click	OK.

6.	 Click	OK	once	more	to	accept	the	changes	and	return	to	the	main
window.	The	user	interface	should	then	reload	itself	to	reflect	the
updated	color	scheme.

As	 you	 work	 with	Wireshark	 on	 your	 network,	 you’ll	 begin	 to	 notice
that	you	deal	with	certain	protocols	more	than	others.	Here’s	where	color-
coded	packets	can	make	your	life	a	lot	easier.	For	example,	if	you	think	that
there	is	a	rogue	DHCP	server	on	your	network	handing	out	IP	leases,	you
could	modify	the	coloring	rule	for	the	DHCP	protocol	so	that	it	shows	up	in
bright	yellow	(or	some	other	easily	identifiable	color).	This	would	allow	you
to	 pick	 out	 all	 DHCP	 traffic	 much	 more	 quickly,	 making	 your	 packet
analysis	more	efficient.

NOTE

Not	too	long	ago,	I	was	discussing	Wireshark	coloring	rules	during	a
presentation	to	a	local	group	of	students.	One	student	was	relieved	to	find	out
he	could	edit	the	coloring	rules	because	he	was	color-blind	and	had	trouble



distinguishing	certain	protocols	based	on	the	default	coloring.	The	ability	to
modify	the	default	coloring	rules	thus	provides	some	degree	of	accessibility.

Configuration	Files
It’s	 helpful	 to	 understand	 where	 Wireshark	 stores	 various	 configuration
settings	should	you	ever	need	to	modify	those	files	directly.	You	can	find	the
location	 of	 the	Wireshark	 configuration	 files	 by	 selecting	Help	 from	 the
main	 drop-down	 menu,	 choosing	 About	 Wireshark,	 and	 clicking	 the
Folders	tab.	This	window	is	shown	in	Figure	3-10.

Figure	3-10:	Locating	Wireshark	configuration	files

The	two	most	important	locations	in	terms	of	Wireshark	customization
are	 the	 personal	 and	 global	 configuration	 directories.	 The	 global
configuration	directory	contains	all	of	the	default	settings	for	Wireshark	and
is	 where	 the	 default	 profile	 stores	 its	 settings.	 The	 personal	 configuration
folder	contains	customized	settings	and	profiles	unique	to	your	account.	Any
new	 profiles	 you	 create	 will	 be	 stored	 in	 a	 subdirectory	 of	 the	 personal
configuration	folder	using	whatever	name	you	provide.

The	difference	between	global	and	personal	configuration	directories	is
an	important	one,	because	any	changes	made	to	the	global	configuration	files



will	affect	every	Wireshark	user	on	a	system.

Configuration	Profiles
After	learning	about	Wireshark’s	preferences,	you	may	find	that	sometimes
you	want	to	use	one	set	of	preferences	but	then	quickly	switch	to	another	set
to	address	a	different	scenario.	Instead	of	making	you	manually	reconfigure
your	preferences	every	time	this	occurs,	Wireshark	introduced	configuration
profiles,	which	allow	users	to	create	saved	sets	of	preferences.

A	configuration	profile	stores	the	following:

•					Preferences
•					Capture	filters
•					Display	filters
•					Coloring	rules
•					Disabled	protocols
•					Forced	decodes
•					Recent	settings,	such	as	pane	sizes,	view	menu	settings,	and	column

widths
•					Protocol-specific	tables,	such	as	SNMP	users	and	custom	HTTP

headers

To	view	the	list	of	profiles,	click	Edit	in	the	main	drop-down	menu	and
choose	the	Configuration	Profiles	option.	Alternatively,	you	can	right-click
the	 profiles	 section	 at	 the	 bottom-right	 side	 of	 the	 screen	 and	 select	 the
Manage	 Profiles	 option.	When	 you	 arrive	 at	 the	 Configuration	 Profiles
window,	 you’ll	 see	 that	 Wireshark	 comes	 with	 a	 few	 standard	 profiles,
including	the	Default,	Bluetooth,	and	Classic	profiles	shown	in	Figure	3-11.
The	Latency	 Investigation	 profile	 is	 a	 custom	 profile	 I’ve	 added	 and	 is	 in
plaintext,	while	the	global	and	default	profiles	are	in	italics.



Figure	3-11:	Viewing	configuration	profiles

The	Configuration	Profiles	window	allows	you	 to	 create,	 copy,	delete,
and	 apply	 configuration	 profiles.	 The	 process	 of	 creating	 a	 new	 profile	 is
very	simple.

1.	 Configure	Wireshark	with	the	settings	you’d	like	to	save	to	a	profile.

2.	 Proceed	to	the	Configuration	Profiles	window	by	clicking	Edit	in	the
main	drop-down	menu.	Select	the	Configuration	Profiles	option.

3.	 Click	the	plus	(+)	button	and	give	the	profile	a	descriptive	name.

4.	 Click	OK.

When	 you’d	 like	 to	 switch	 profiles,	 you	 can	 go	 to	 the	 Configuration
Profile	window,	click	the	profile	name,	and	click	OK.	You	can	do	this	more
quickly	by	clicking	the	Profile	heading	at	the	bottom	right	of	the	Wireshark
window	and	selecting	the	profile	you’d	like	to	use,	as	shown	in	Figure	3-12.



Figure	3-12:	Quickly	switch	between	profiles	through	the	Profile	heading.

One	 of	 the	 most	 useful	 aspects	 of	 configuration	 profiles	 is	 that	 each
profile	is	stored	in	its	own	directory	with	a	series	of	configuration	files.	This
means	that	you	can	back	up	your	profiles	and	share	them	with	others.	The
folders	 tab	 shown	 in	 Figure	 3-10	 provides	 paths	 to	 personal	 and	 global
configuration	 file	 directories.	 To	 share	 a	 profile	 with	 a	 user	 on	 another
computer,	just	copy	the	folder	matching	the	name	of	the	profile	you	want	to
share	and	paste	it	into	the	same	directory	for	the	appropriate	user	on	another
computer.

While	reading	along	in	this	book,	you	may	find	the	need	to	create	a	few
high-level	 profiles	 for	 general	 troubleshooting,	 finding	 the	 source	 of
network	 latency,	 and	 investigating	 security	 issues.	 Don’t	 be	 afraid	 to	 use
profiles	liberally.	They	are	real	time-savers	when	you	want	to	quickly	switch
a	few	preference	options	on	or	off.	I’ve	known	people	who	have	used	dozens
of	profiles	to	address	different	scenarios	with	great	success.

Now	that	you	have	Wireshark	up	and	running,	you’re	ready	to	do	some
packet	 analysis.	 Chapter	 4	 describes	 how	 you	 can	 work	 with	 the	 packets
you’ve	captured.



4
WORKING	WITH	CAPTURED	PACKETS

Now	 that	 you’ve	 been	 introduced	 to	 Wireshark,
you’re	 ready	 to	 start	capturing	and	analyzing	packets.
In	this	chapter,	you’ll	learn	how	to	work	with	capture
files,	 packets,	 and	 time-display	 formats.	 We’ll	 also
cover	 more	 advanced	 options	 for	 capturing	 packets
and	dive	into	the	world	of	filters.

Working	with	Capture	Files

You’ll	find	that	a	good	portion	of	your	packet	analysis	will	happen	after	your
capture.	Usually,	you’ll	perform	several	captures	at	various	times,	save	them,
and	analyze	them	all	at	once.	Therefore,	Wireshark	allows	you	to	save	your
capture	files	to	be	analyzed	later.	You	can	also	merge	multiple	capture	files.

Saving	and	Exporting	Capture	Files

To	save	a	packet	capture,	select	File	▶	Save	As.	You	should	see	the	Save	file
as	dialog,	as	shown	in	Figure	4-1.	You’ll	be	asked	for	a	location	to	save	your
packet	capture	and	for	the	file	format	you	wish	to	use.	If	you	don’t	specify	a



file	format,	Wireshark	will	use	the	default	.pcapng	file	format.

Figure	4-1:	The	Save	file	as	dialog	allows	you	to	save	your	packet	captures.

In	many	cases,	you	may	only	want	to	save	a	subset	of	the	packets	in	your
capture.	To	do	so,	select	File	▶	Export	Specified	Packets.	The	dialog	that
appears	 is	shown	in	Figure	4-2.	This	 is	a	great	way	to	thin	bloated	packet-
capture	files.	You	can	choose	to	save	only	packets	in	a	specific	number	range,
marked	 packets,	 or	 packets	 visible	 as	 the	 result	 of	 a	 display	 filter	 (marked
packets	and	filters	are	discussed	later	in	this	chapter).

You	 can	 export	 your	Wireshark	 capture	 data	 into	 several	 formats	 for
viewing	 in	 other	 media	 or	 for	 importing	 into	 other	 packet	 analysis	 tools.
Formats	 include	 plaintext,	 PostScript,	 comma-separated	 values	 (CSV),	 and
XML.	To	export	your	packet	capture	in	one	of	these	formats,	choose	File	▶
Export	Packet	Dissections	and	then	select	the	format	for	the	exported	file.
You’ll	 see	a	Save	As	dialog	containing	options	related	to	the	format	you’ve
chosen.



Figure	4-2:	The	Export	Specified	Packets	dialog	allows	you	to	have	more	granular	control	over	the
packets	you	choose	to	save.

Merging	Capture	Files

Certain	types	of	analysis	require	the	ability	to	merge	multiple	capture	files.
This	is	a	common	practice	when	comparing	two	data	streams	or	combining
streams	of	the	same	traffic	that	were	captured	separately.

To	merge	 capture	 files,	 open	 one	 of	 the	 files	 you	want	 to	merge	 and
choose	File	▶	Merge	to	bring	up	the	Merge	with	capture	file	dialog,	shown
in	Figure	4-3.	Select	 the	new	file	you	wish	to	merge	 into	the	already	open



file	and	then	select	the	method	to	use	for	merging	the	files.	You	can	prepend
the	 selected	 file	 to	 the	 currently	 open	 one,	 append	 it,	 or	 merge	 the	 files
chronologically	based	on	their	timestamps.

Figure	4-3:	The	Merge	with	capture	file	dialog	allows	you	to	merge	two	capture	files.

Working	with	Packets
You	will	 eventually	encounter	a	 situation	 involving	a	very	 large	number	of
packets.	 As	 the	 number	 of	 packets	 grows	 into	 the	 thousands	 and	 even
millions,	you	will	need	to	navigate	through	packets	more	efficiently.	For	this
purpose,	Wireshark	allows	you	to	find	and	mark	packets	that	match	certain
criteria.	You	can	also	print	packets	for	easy	reference.



Finding	Packets

To	 find	 packets	 that	 match	 particular	 criteria,	 open	 the	 Find	 Packet	 bar,
shown	 circled	 in	 Figure	 4-4,	 by	 pressing	CTRL-F.	 This	 bar	 should	 appear
between	the	Filter	bar	and	the	Packet	List	pane.

Figure	4-4:	Finding	packets	in	Wireshark	based	on	specified	criteria—in	this	case,	packets
matching	the	display	filter	expression	tcp

This	pane	offers	three	options	for	finding	packets:

•					The	Display	filter	option	allows	you	to	enter	an	expression-based	filter
that	will	find	only	those	packets	that	satisfy	that	expression.	This	option
is	used	in	Figure	4-4.

•					The	Hex	value	option	searches	for	packets	with	a	hexadecimal	value	you
specify.

•					The	String	option	searches	for	packets	with	a	text	string	you	specify.
You	can	specify	the	pane	the	search	is	performed	in	or	make	the	search
string	case	sensitive.

Table	4-1	shows	examples	of	these	search	types.

Table	4-1:	Search	Types	for	Finding	Packets

Search	type Examples

Display	filter not ip
ip.addr==192.168.0.1
arp

Hex	value 00ff
ffff
00ABB1f0

String Workstation1
UserB
domain

Once	you’ve	decided	which	search	type	you	will	use,	enter	your	search
criteria	in	the	text	box	and	click	Find	to	find	the	first	packet	that	meets	your
criterion.	To	find	the	next	matching	packet,	click	Find	again	or	press	CTRL-



N;	find	the	previous	matching	packet	by	pressing	CTRL-B.

Marking	Packets

After	you	have	found	packets	that	match	your	criterion,	you	can	mark	those
of	 particular	 interest.	 For	 example,	marking	 packets	will	 let	 you	 save	 only
these	packets.	Also,	you	can	find	your	marked	packets	quickly	by	their	black
background	and	white	text,	as	shown	in	Figure	4-5.

Figure	4-5:	A	marked	packet	is	highlighted	on	your	screen.	In	this	example,	the	second	packet	is
marked	and	appears	darker.

To	 mark	 a	 packet,	 either	 right-click	 it	 in	 the	 Packet	 List	 pane	 and
choose	Mark	Packet	 from	the	pop-up	or	click	a	packet	 in	 the	Packet	List
pane	 and	 press	 CTRL-M.	 To	 unmark	 a	 packet,	 toggle	 this	 setting	 off	 by
pressing	 CTRL-M	 again.	 You	 can	 mark	 as	 many	 packets	 as	 you	 wish	 in	 a
capture.	 To	 jump	 forward	 and	 backward	 between	 marked	 packets,	 press
SHIFT-CTRL-N	and	SHIFT-CTRL-B,	respectively.

Printing	Packets

Although	 most	 analysis	 will	 take	 place	 on	 the	 computer	 screen,	 you	 may
need	to	print	captured	data.	I	occasionally	print	out	packets	and	tape	them	to
my	desk	so	I	can	quickly	reference	their	contents	while	doing	other	analysis.
Being	able	to	print	packets	to	a	PDF	file	 is	also	very	convenient,	especially
when	preparing	reports.

To	 print	 captured	 packets,	 open	 the	 Print	 dialog	 by	 choosing	File	▶
Print	from	the	main	menu,	as	shown	in	Figure	4-6.



Figure	4-6:	The	Print	dialog	allows	you	to	print	the	packets	you	specify.

As	 with	 the	 Export	 Specified	 Packets	 dialog,	 you	 can	 print	 a	 specific
packet	 range,	marked	 packets	 only,	 or	 packets	 displayed	 as	 the	 result	 of	 a
filter.	You	can	also	select	the	level	of	detail	you	wish	to	print	for	each	packet.
Once	you	have	selected	the	options,	click	Print.

Setting	Time	Display	Formats	and	References
Time	 is	 of	 the	 essence—especially	 in	 packet	 analysis.	 Everything	 that
happens	on	a	network	is	time	sensitive,	and	you	will	need	to	examine	trends
and	network	 latency	 in	 capture	 files	 frequently.	Wireshark	 supplies	 several
configurable	 options	 related	 to	 time.	 In	 this	 section,	 we’ll	 look	 at	 time
display	formats	and	references.



Time	Display	Formats

Each	packet	that	Wireshark	captures	is	given	a	timestamp,	which	is	applied
to	 the	 packet	 by	 the	 operating	 system.	Wireshark	 can	 show	 the	 absolute
timestamp,	which	indicates	the	exact	moment	when	the	packet	was	captured,
as	well	as	the	time	in	relation	to	the	last	captured	packet	and	the	beginning
and	end	of	the	capture.

Options	 related	 to	 time	 display	 are	 found	 under	 the	View	heading	 on
the	main	menu.	The	Time	Display	Format	section,	shown	in	Figure	4-7,	lets
you	 configure	 the	 presentation	 format	 as	well	 as	 the	 precision	 of	 the	 time
display.

Figure	4-7:	Several	time	display	formats	are	available.

The	presentation	format	options	let	you	choose	various	settings	for	time
display.	 These	 include	 date	 and	 time	 of	 day,	 UTC	 date	 and	 time	 of	 day,
seconds	since	epoch,	seconds	since	beginning	of	capture	(the	default	setting),
seconds	since	previous	captured	packet,	and	more.



The	precision	options	allow	you	to	set	the	time	display	precision	to	an
automatic	 setting,	 which	 takes	 the	 format	 from	 the	 capture	 file,	 or	 to	 a
manual	setting,	such	as	seconds,	milliseconds,	microseconds,	and	so	on.	We
will	be	 changing	 these	options	 later	 in	 the	book,	 so	you	 should	 familiarize
yourself	with	them	now.

NOTE

When	comparing	packet	data	from	multiple	devices,	be	sure	that	the	devices
are	synchronized	with	the	same	time	source,	especially	if	you	are	performing
forensic	analysis	or	troubleshooting.	You	can	use	the	Network	Time	Protocol
(NTP)	to	ensure	network	devices	are	synced.	When	examining	packets	from
devices	spanning	more	than	one	time	zone,	consider	analyzing	packets	in	UTC
instead	of	local	time	to	avoid	confusion	when	reporting	your	findings.

Packet	Time	Referencing

Packet	time	referencing	allows	you	to	configure	a	certain	packet	so	that	all
subsequent	time	calculations	are	done	in	relation	to	that	packet.	This	feature
is	 particularly	 handy	when	 you	 are	 examining	 a	 series	 of	 sequential	 events
that	are	triggered	at	some	point	other	than	the	start	of	the	capture	file.

To	set	a	 time	reference	 to	a	packet,	 right-click	 the	reference	packet	 in
the	 Packet	 List	 pane	 and	 choose	Set/Unset	Time	Reference.	 To	 toggle
this	reference	off,	repeat	the	same	action.	You	can	also	toggle	a	packet	as	a
time	 reference	on	and	off	by	 selecting	 the	packet	 you	wish	 to	 reference	 in
the	Packet	List	pane	and	pressing	CTRL-T.

When	you	enable	a	time	reference	on	a	packet,	the	Time	column	in	the
Packet	List	pane	will	display	*REF*,	as	shown	in	Figure	4-8.

Figure	4-8:	Packet	4	with	the	packet	time	reference	toggle	enabled

Setting	 a	 packet	 time	 reference	 is	 useful	 only	 when	 the	 time	 display
format	of	a	capture	is	set	to	display	the	time	in	relation	to	the	beginning	of



the	capture.	Any	other	setting	will	produce	no	usable	results	and	indeed	will
generate	a	set	of	times	that	can	be	very	confusing.

Time	Shifting

In	some	cases,	you	might	encounter	packets	 from	multiple	sources	that	are
not	synchronized	to	the	same	time	source.	This	is	especially	common	when
examining	 capture	 files	 taken	 from	 two	 locations	 that	 contain	 the	 same
stream	 of	 data.	 While	 most	 administrators	 desire	 a	 state	 in	 which	 every
device	on	their	network	is	synced,	it’s	not	uncommon	for	there	to	be	a	few
seconds	of	 time	skew	between	certain	 types	of	devices.	Wireshark	provides
the	ability	to	shift	the	timestamp	on	packets	to	alleviate	this	problem	during
your	analysis.

To	 shift	 the	 timestamp	 on	 one	 or	more	 packets,	 select	Edit	▶	Time
Shift	or	press	CTRL-SHIFT-T.	On	the	Time	Shift	screen	that	opens,	you	can
specify	a	time	range	to	shift	 the	entire	capture	file	by,	or	you	can	specify	a
time	 to	 set	 individual	packets	 to.	 In	 the	example	 shown	 in	Figure	4-9,	 I’ve
chosen	to	shift	the	timestamp	of	every	packet	in	the	capture	by	adding	two
minutes	and	five	seconds	to	each	packet.

Figure	4-9:	The	Time	Shift	dialog

Setting	Capture	Options



We	 looked	 at	 the	Capture	 Interfaces	 dialog	while	walking	 through	 a	 very
basic	 packet	 capture	 in	 the	 last	 chapter.	 Wireshark	 offers	 quite	 a	 few
additional	 capture	 options	 that	 we	 didn’t	 address	 then.	 To	 access	 these
options,	choose	Capture	▶	Options.

The	Capture	Interfaces	dialog	has	a	lot	of	bells	and	whistles,	all	designed
to	give	you	more	 flexibility	while	 capturing	packets.	 It’s	divided	 into	 three
tabs:	Input,	Output,	and	Options.	We’ll	examine	each	separately.

Input	Tab

The	 main	 purpose	 of	 the	 Input	 tab	 (Figure	 4-10)	 is	 to	 display	 all	 the
interfaces	 available	 for	 capturing	 packets	 and	 some	 basic	 information	 for
each	interface.	This	includes	the	friendly	name	of	the	interface	provided	by
the	 operating	 system,	 a	 traffic	 graph	 showing	 the	 throughput	 on	 the
interface,	 and	 additional	 configuration	 options	 such	 as	 promiscuous	mode
status	and	buffer	size.	At	the	far	right	(not	pictured),	there	is	also	a	column
for	the	applied	capture	filter,	which	we’ll	talk	about	in	“Capture	Filters”	on
page	65.

In	this	section,	you	can	click	most	of	these	options	and	edit	them	inline.
For	example,	if	you	want	to	disable	promiscuous	mode	on	an	interface,	you
can	click	that	field	and	change	it	from	enabled	to	disabled	via	the	provided
drop-down	menu.



Figure	4-10:	The	Capture	Interfaces	Input	options	tab

Output	Tab

The	Output	 tab	 (Figure	 4-11)	 allows	 you	 to	 automatically	 store	 captured
packets	 in	 a	 file,	 rather	 than	 capturing	 them	 first	 and	 then	 saving	 the	 file.
Doing	so	offers	you	more	flexibility	in	managing	how	packets	are	saved.	You
can	choose	to	save	them	as	a	single	file	or	a	file	set	or	even	use	a	ring	buffer
(which	we’ll	cover	in	a	moment)	to	manage	the	number	of	files	created.	To
enable	this	option,	enter	a	complete	file	path	and	name	in	the	File	text	box.
Alternatively,	 use	 the	 Browse...	 button	 to	 select	 a	 directory	 and	 provide	 a
filename.



Figure	4-11:	The	Capture	Interfaces	Output	options	tab

When	you	are	capturing	a	 large	amount	of	 traffic	or	performing	 long-
term	captures,	file	sets	can	prove	particularly	useful.	A	file	set	is	a	grouping	of
multiple	files	separated	by	a	particular	condition.	To	save	to	a	file	set,	check
the	Create	a	new	file	automatically	after...	option.

Wireshark	uses	various	triggers	to	manage	saving	to	file	sets	based	upon
a	file	size	or	time	condition.	To	enable	one	of	these	triggers,	select	the	radio
button	next	to	the	size-	or	time-based	option	and	then	specify	the	value	and
unit	on	which	 to	 trigger.	For	 instance,	 you	 can	 set	 a	 trigger	 that	 creates	 a
new	 file	 after	 every	 1MB	 of	 traffic	 captured	 or,	 as	 shown	 in	 Figure	 4-12,
after	every	minute	of	traffic	captured.



Figure	4-12:	A	file	set	created	by	Wireshark	at	one-minute	intervals

The	Use	a	ring	buffer	option	lets	you	specify	a	certain	number	of	 files
your	file	set	will	hold	before	Wireshark	begins	to	overwrite	files.	Although
the	term	ring	buffer	has	multiple	meanings,	for	our	purposes,	it	is	essentially
a	 file	 set	 that	 specifies	 that	 once	 the	 last	 file	 it	 can	hold	 has	 been	written,
when	more	data	must	be	saved,	the	first	file	is	overwritten.	In	other	words,	it
establishes	a	first	in,	first	out	(FIFO)	method	of	writing	files.	You	can	check
this	 option	 and	 specify	 the	 maximum	 number	 of	 files	 you	 wish	 to	 cycle
through.	For	example,	say	you	choose	to	use	multiple	files	for	your	capture
with	a	new	file	created	every	hour,	and	you	set	your	ring	buffer	to	6.	Once
the	 sixth	 file	 has	 been	 created,	 the	 ring	 buffer	will	 cycle	 back	 around	 and
overwrite	the	first	file	rather	than	create	a	seventh	file.	This	ensures	that	no
more	than	six	files	(or	in	this	case,	hours)	of	data	will	remain	on	your	hard
drive,	while	still	allowing	new	data	to	be	written.

Lastly,	 the	Output	 tab	 also	 lets	 you	 specify	whether	 to	use	 the	 .pcapng
file	format.	If	you	plan	to	interact	with	your	saved	packets	using	a	tool	that
isn’t	capable	of	parsing	.pcapng,	you	can	select	the	traditional	.pcap	format.

Options	Tab

The	 Options	 tab	 contains	 a	 number	 of	 other	 packet-capturing	 choices,
including	display,	name	resolution,	and	capture	termination	options,	shown
in	Figure	4-13.



Figure	4-13:	The	Capture	Interfaces	Options	tab

Display	Options

The	Display	Options	 section	 controls	 how	 packets	 are	 shown	 as	 they	 are
being	 captured.	 The	 Update	 list	 of	 packets	 in	 real-time	 option	 is	 self-
explanatory	 and	 can	 be	 paired	 with	 the	 Automatically	 scroll	 during	 live
capture	option.	When	both	of	these	options	are	enabled,	all	captured	packets
are	 displayed	 on	 the	 screen,	 with	 the	 most	 recently	 captured	 ones	 shown
instantly.

WARNING

When	paired,	the	Update	list	of	packets	in	real-time	and	Automatically	scroll
during	live	capture	options	can	be	processor	intensive,	even	when	you	are
capturing	a	modest	amount	of	data.	Unless	you	have	a	specific	need	to	see	the
packets	in	real	time,	it’s	best	to	deselect	both	options.



The	 Show	 extra	 capture	 information	 dialog	 option	 lets	 you	 enable	 or
suppress	 the	 display	 of	 a	 small	 window	 that	 shows	 the	 number	 and
percentage	 of	 packets	 that	 have	 been	 captured,	 sorted	 by	 their	 protocol.	 I
like	to	show	the	capture	info	dialog	since	I	typically	don’t	allow	for	the	live
scrolling	of	packets	during	capture.

Name	Resolution	Settings

The	Name	Resolution	section	options	allow	you	to	enable	automatic	MAC
(layer	2),	network	(layer	3),	and	transport	(layer	4)	name	resolution	for	your
capture.	We’ll	 discuss	 name	 resolution	 as	 a	 general	 topic	 in	 more	 depth,
including	its	drawbacks,	in	Chapter	5.

Stop	Capture	Settings

The	 Stop	 capture	 automatically	 after...	 section	 lets	 you	 stop	 the	 running
capture	when	certain	conditions	are	met.	As	with	multiple	file	sets,	you	can
trigger	the	capture	to	stop	based	on	file	size	and	time	interval,	but	you	can
also	 trigger	 on	 number	 of	 packets.	 These	 options	 can	 be	 used	 with	 the
multiple-file	options	on	the	Output	tab.

Using	Filters
Filters	 allow	 you	 to	 specify	 which	 packets	 you	 have	 available	 for	 analysis.
Simply	stated,	a	filter	is	an	expression	that	defines	criteria	for	the	inclusion
or	exclusion	of	packets.	If	 there	are	packets	you	don’t	want	to	see,	you	can
write	 a	 filter	 that	 gets	 rid	 of	 them.	 If	 there	 are	 packets	 you	 want	 to	 see
exclusively,	you	can	write	a	filter	that	shows	only	those	packets.

Wireshark	offers	two	main	types	of	filters:

•					Capture	filters	are	specified	when	packets	are	being	captured	and	will
capture	only	those	packets	that	are	specified	for	inclusion/exclusion	in
the	given	expression.

•					Display	filters	are	applied	to	an	existing	set	of	captured	packets	in	order
to	hide	unwanted	packets	or	show	desired	packets	based	on	the	specified
expression.

Let’s	look	at	capture	filters	first.



Capture	Filters

Capture	 filters	are	applied	during	the	packet-capturing	process	 to	 limit	 the
packets	delivered	to	the	analyst	from	the	start.	One	primary	reason	for	using
a	capture	filter	is	performance.	If	you	know	that	you	do	not	need	to	analyze	a
particular	form	of	traffic,	you	can	simply	filter	it	out	with	a	capture	filter	and
save	 the	 processing	 power	 that	would	 typically	 be	 used	 in	 capturing	 those
packets.

The	ability	to	create	custom	capture	filters	comes	in	handy	when	you’re
dealing	with	large	amounts	of	data.	The	analysis	can	be	sped	up	by	ensuring
that	you	are	looking	at	only	the	packet	relevant	to	the	issue	at	hand.

As	an	example,	suppose	you	are	troubleshooting	an	issue	with	a	service
running	on	port	262,	but	the	server	you	are	analyzing	runs	several	different
services	on	a	variety	of	ports.	Finding	and	analyzing	only	the	traffic	on	one
port	would	be	quite	a	 job	in	itself.	To	capture	only	the	traffic	on	a	specific
port,	 you	 could	 use	 a	 capture	 filter.	To	 do	 so,	 use	 the	Capture	 Interfaces
dialog	as	follows:

1.	 Choose	the	Capture	▶	Options	button	next	to	the	interface	on	which
you	want	to	capture	packets.	This	will	open	the	Capture	Interfaces
dialog.

2.	 Find	the	interface	you	wish	to	use	and	scroll	to	the	Capture	Filter
option	in	the	far-right	column.

3.	 You	can	apply	the	capture	filter	by	clicking	in	this	column	to	enter	an
expression.	We	want	our	filter	to	show	only	traffic	inbound	and
outbound	to	port	262,	so	enter	port	262,	as	shown	in	Figure	4-14.
(We’ll	discuss	expressions	in	more	detail	in	the	next	section.)	The	color
of	the	cell	should	turn	green,	indicating	that	you’ve	entered	a	valid
expression;	it	will	turn	red	if	the	expression	is	invalid.



Figure	4-14:	Creating	a	capture	filter	in	the	Capture	Interfaces	dialog

4.	 Once	you	have	set	your	filter,	click	Start	to	begin	the	capture.

You	should	now	see	only	port	262	traffic	and	be	able	to	more	efficiently
analyze	this	particular	data.

Capture/BPF	Syntax

Capture	filters	are	applied	by	libpcap/WinPcap	and	use	the	Berkeley	Packet
Filter	 (BPF)	 syntax.	 This	 syntax	 is	 common	 in	 several	 packet-sniffing
applications,	mostly	because	packet-sniffing	applications	tend	to	rely	on	the
libpcap/WinPcap	libraries,	which	allow	for	the	use	of	BPFs.	A	knowledge	of
BPF	 syntax	 will	 be	 crucial	 as	 you	 dig	 deeper	 into	 networks	 at	 the	 packet
level.

A	 filter	 created	 using	 the	 BPF	 syntax	 is	 called	 an	 expression,	 and	 each
expression	 consists	 of	 one	 or	more	 primitives.	 Primitives	 consist	 of	 one	 or
more	qualifiers	(as	listed	in	Table	4-2),	followed	by	an	ID	name	or	number,
as	shown	in	Figure	4-15.

Table	4-2:	The	BPF	Qualifiers

Qualifier Description Examples

Type Identifies	what	the	ID	name	or	number
refers	to

host, net, port



Dir Specifies	a	transfer	direction	to	or	from	the
ID	name	or	number

src, dst

Proto Restricts	the	match	to	a	particular	protocol ether, ip, tcp, udp,
http, ftp

Figure	4-15:	A	sample	capture	filter

Given	the	components	of	an	expression,	a	qualifier	of	dst host	and	an	ID
of	192.168.0.10	would	combine	to	form	a	primitive.	This	primitive	alone	is
an	expression	that	would	capture	traffic	only	with	a	destination	IP	address	of
192.168.0.10.

You	 can	 use	 logical	 operators	 to	 combine	 primitives	 to	 create	 more
advanced	expressions.	Three	logical	operators	are	available:

•					Concatenation	operator	AND	(&&)
•					Alternation	operator	OR	(||)
•					Negation	operator	NOT	(!)

For	 example,	 the	 following	 expression	 will	 capture	 only	 traffic	 with	 a
source	IP	address	of	192.168.0.10	and	a	source	or	destination	port	of	80:

src host 192.168.0.10 && port 80

Hostname	and	Addressing	Filters

Most	 filters	 you	 create	 will	 center	 on	 a	 particular	 network	 device	 or
grouping	of	devices.	Depending	on	the	circumstances,	filtering	can	be	based



on	a	device’s	MAC	address,	IPv4	address,	IPv6	address,	or	DNS	hostname.
For	example,	say	you’re	curious	about	the	traffic	of	a	particular	host	that

is	interacting	with	a	server	on	your	network.	From	the	server,	you	can	create
a	 filter	 using	 the	 host	 qualifier	 that	 captures	 all	 traffic	 associated	with	 that
host’s	IPv4	address:

host 172.16.16.149

If	you	are	on	an	IPv6	network,	you	would	filter	based	on	an	IPv6	address
using	the	host	qualifier,	as	shown	here:

host 2001:db8:85a3::8a2e:370:7334

You	can	also	filter	based	on	a	device’s	hostname	with	the	host	qualifier,
like	so:

host testserver2

Or,	if	you’re	concerned	that	the	IP	address	for	a	host	might	change,	you
can	 filter	 based	 on	 its	 MAC	 address	 as	 well	 by	 adding	 the	 ether	 protocol
qualifier:

ether host 00-1a-a0-52-e2-a0

The	 transfer	 direction	 qualifiers	 are	 often	 used	 in	 conjunction	 with
filters,	such	as	the	ones	in	the	previous	examples,	to	capture	traffic	based	on
whether	 it’s	going	 to	or	coming	 from	a	host.	For	example,	 to	capture	only
traffic	coming	from	a	particular	host,	add	the	src	qualifier:

src host 172.16.16.149

To	capture	only	data	destined	for	172.16.16.149,	use	the	dst	qualifier:

dst host 172.16.16.149

When	you	don’t	use	a	type	qualifier	(host,	net,	or	port)	with	a	primitive,
the	host	qualifier	is	assumed.	Therefore,	this	expression,	which	excludes	that
qualifier,	is	the	equivalent	of	the	preceding	example:

dst 172.16.16.149



Port	Filters

In	 addition	 to	 filtering	 on	hosts,	 you	 can	 filter	 based	 on	 the	 ports	 used	 in
each	packet.	Port	filtering	can	be	used	to	filter	for	services	and	applications
that	use	known	service	ports.	For	example,	here’s	a	simple	filter	 to	capture
traffic	only	to	or	from	port	8080:

port 8080

To	capture	all	traffic	except	that	on	port	8080,	this	would	work:

!port 8080

The	port	filters	can	be	combined	with	transfer	direction	qualifiers.	For
example,	 to	 capture	 only	 traffic	 going	 to	 the	 web	 server	 listening	 on	 the
standard	HTTP	port	80,	use	the	dst	qualifier:

dst port 80

Protocol	Filters

Protocol	 filters	 let	 you	 filter	 packets	 based	 on	 certain	 protocols.	They	 are
used	 to	match	non–application	 layer	protocols	 that	can’t	 simply	be	defined
by	the	use	of	a	certain	port.	Thus,	if	you	want	to	see	only	ICMP	traffic,	you
could	use	this	filter:

icmp

To	see	everything	but	IPv6	traffic,	this	will	do	the	trick:

!ip6

Protocol	Field	Filters

One	of	the	real	strengths	of	the	BPF	syntax	is	the	ability	that	it	gives	us	to
examine	 every	 byte	 of	 a	 protocol	 header	 in	 order	 to	 create	 very	 specific
filters	 based	 on	 that	 data.	 The	 advanced	 filters	 that	 we’ll	 discuss	 in	 this
section	will	 allow	you	 to	 retrieve	 a	 specific	number	of	bytes	 from	a	packet
beginning	at	a	particular	location.

For	example,	suppose	that	we	want	to	filter	based	on	the	type	field	of	an



ICMP	header.	The	 type	 field	 is	 located	 at	 the	 very	beginning	of	 a	 packet,
which	puts	it	at	offset	0.	To	identify	the	location	to	examine	within	a	packet,
specify	 the	 byte	 offset	 in	 square	 brackets	 next	 to	 the	 protocol	 qualifier
—icmp[0]	in	this	example.	This	specification	will	return	a	1-byte	integer	value
that	we	 can	 compare	 against.	For	 instance,	 to	get	only	 ICMP	packets	 that
represent	 destination	 unreachable	 (type	 3)	 messages,	 we	 use	 the	 equal	 to
operator	in	our	filter	expression:

icmp[0] == 3

To	examine	only	ICMP	packets	that	represent	an	echo	request	(type	8)
or	echo	reply	(type	0),	use	two	primitives	with	the	OR	operator:

icmp[0] == 8 || icmp[0] == 0

These	 filters	 work	 great,	 but	 they	 filter	 based	 on	 only	 1	 byte	 of
information	within	a	packet	header.	You	can	also	 specify	 the	 length	of	 the
data	 to	be	 returned	 in	 your	 filter	 expression	by	 appending	 the	byte	 length
after	the	offset	number	within	the	square	brackets,	separated	by	a	colon.

For	 example,	 say	 we	 want	 to	 create	 a	 filter	 that	 captures	 all	 ICMP
destination-unreachable,	host-unreachable	packets,	identified	by	type	3,	code
1.	These	are	1-byte	fields,	located	next	to	each	other	at	offset	0	of	the	packet
header.	To	do	this,	we	create	a	filter	that	checks	2	bytes	of	data	beginning	at
offset	0	of	the	packet	header,	and	we	compare	that	data	against	the	hex	value
0301	(type	3,	code	1),	like	this:

icmp[0:2] == 0x0301

A	common	scenario	 is	to	capture	only	TCP	packets	with	the	RST	flag
set.	We	will	cover	TCP	extensively	in	Chapter	8.	For	now,	you	just	need	to
know	 that	 the	 flags	 of	 a	 TCP	 packet	 are	 located	 at	 offset	 13.	 This	 is	 an
interesting	field	because	it	is	collectively	1	byte	in	size	as	the	flags	field,	but
each	 particular	 flag	 is	 identified	 by	 a	 single	 bit	 within	 this	 byte.	 As	 I	 will
discuss	 further	 in	 Appendix	 B,	 each	 bit	 in	 a	 byte	 represents	 some	 base	 2
number.	 The	 bit	 the	 flag	 is	 stored	 in	 is	 specified	 by	 the	 number	 the	 bit
represents,	so	the	first	bit	would	represent	1,	the	second	2,	the	third	4,	and
so	on.	Multiple	flags	can	be	set	simultaneously	in	a	TCP	packet.	Therefore,
we	can’t	efficiently	filter	by	using	a	single	tcp[13]	value	because	several	values
may	represent	the	RST	bit	being	set.



Instead,	 we	must	 specify	 the	 location	within	 the	 byte	 that	 we	wish	 to
examine	by	appending	a	single	ampersand	(&),	 followed	by	the	number	that
represents	where	the	flag	is	stored.	The	RST	flag	is	at	the	bit	representing
the	number	4	within	this	byte,	and	the	fact	that	this	bit	is	set	to	4	tells	us	that
the	RST	flag	is	set.	The	filter	looks	like	this:

tcp[13] & 4 == 4

To	see	all	packets	with	the	PSH	flag	set,	which	 is	 identified	by	the	bit
location	representing	the	number	8	in	the	TCP	flags	at	offset	13,	our	filter
would	use	that	location	instead:

tcp[13] & 8 == 8

Sample	Capture	Filter	Expressions

You	will	 often	 find	 that	 the	 success	 or	 failure	 of	 your	 analysis	 depends	 on
your	ability	to	create	filters	appropriate	for	your	current	situation.	Table	4-3
shows	a	few	common	capture	filters	that	you	might	use	frequently.

Table	4-3:	Commonly	Used	Capture	Filters

Filter Description

tcp[13] & 32 == 32 TCP	packets	with	the	URG	flag	set
tcp[13] & 16 == 16 TCP	packets	with	the	ACK	flag	set
tcp[13] & 8 == 8 TCP	packets	with	the	PSH	flag	set
tcp[13] & 4 == 4 TCP	packets	with	the	RST	flag	set
tcp[13] & 2 == 2 TCP	packets	with	the	SYN	flag	set
tcp[13] & 1 == 1 TCP	packets	with	the	FIN	flag	set
tcp[13] == 18 TCP	SYN-ACK	packets
ether host

00:00:00:00:00:00
Traffic	to	or	from	your	MAC	address

!ether host

00:00:00:00:00:00
Traffic	not	to	or	from	your	MAC	address

broadcast Broadcast	traffic	only
icmp ICMP	traffic



icmp ICMP	traffic

icmp[0:2] == 0x0301 ICMP	destination	unreachable,	host
unreachable

ip IPv4	traffic	only
ip6 IPv6	traffic	only
udp UDP	traffic	only

Display	Filters

A	display	filter	is	one	that,	when	applied	to	a	capture	file,	tells	Wireshark	to
display	only	packets	 that	match	 that	 filter.	You	can	enter	a	display	 filter	 in
the	Filter	text	box	above	the	Packet	List	pane.

Display	 filters	 are	 used	 more	 often	 than	 capture	 filters	 because	 they
allow	you	to	filter	the	packet	data	you	see	without	actually	omitting	the	rest
of	the	data	in	the	capture	file.	That	way,	if	you	need	to	revert	to	the	original
capture,	you	can	simply	clear	the	filter	expression.	They	are	also	a	lot	more
powerful	thanks	to	Wireshark’s	extensive	library	of	packet	dissectors.

As	an	example,	in	some	situations,	you	might	use	a	display	filter	to	clear
irrelevant	 broadcast	 traffic	 from	 a	 capture	 file	 by	 filtering	 out	 ARP
broadcasts	from	the	Packet	List	pane	when	those	packets	don’t	relate	to	the
current	 problem	 being	 analyzed.	 However,	 because	 those	 ARP	 broadcast
packets	may	be	useful	later,	it’s	better	to	filter	them	temporarily	than	it	is	to
delete	them.

To	filter	out	all	ARP	packets	in	the	capture	window,	place	your	cursor
in	 the	Filter	 text	box	at	 the	 top	of	 the	Packet	List	pane	and	enter	!arp	 to
remove	 all	 ARP	packets	 from	 the	 list	 (Figure	 4-16).	To	 remove	 the	 filter,
click	the	X	button,	and	to	save	the	filter	for	later,	click	the	plus	(+)	button.

Figure	4-16:	Creating	a	display	filter	using	the	Filter	text	box	above	the	Packet	List	pane

There	are	two	ways	to	apply	display	filters.	One	is	to	apply	them	directly



using	the	appropriate	syntax,	as	we	did	in	this	example.	Another	is	to	use	the
Display	 Filter	 Expression	 dialog	 to	 build	 your	 filter	 iteratively;	 this	 is	 the
easier	method	when	 you	 are	 first	 starting	 to	 use	 filters.	Let’s	 explore	 both
methods,	starting	with	the	easier	first.

The	Display	Filter	Expression	Dialog

The	Display	Filter	Expression	dialog,	 shown	 in	Figure	4-17,	makes	 it	 easy
for	 novice	Wireshark	 users	 to	 create	 capture	 and	 display	 filters.	To	 access
this	dialog,	click	the	Expression	button	on	the	Filter	toolbar.

Figure	4-17:	The	Display	Filter	Expression	dialog	allows	for	the	easy	creation	of	filters	in
Wireshark.



The	 left	 side	 of	 the	 dialog	 lists	 all	 possible	 protocol	 fields,	 and	 these
fields	specify	all	possible	filter	criteria.	To	create	a	filter,	follow	these	steps:

1.	 To	view	the	criteria	fields	associated	with	a	protocol,	expand	that
protocol	by	clicking	the	arrow	symbol	next	to	it.	Once	you	find	the
criterion	you	want	to	base	your	filter	on,	click	to	select	it.

2.	 Choose	how	your	selected	field	will	relate	to	the	criterion	value	you
supply.	This	relation	is	specified	as	equal	to,	greater	than,	less	than,	and
so	on.

3.	 Create	your	filter	expression	by	specifying	a	criterion	value	that	will
relate	to	your	selected	field.	You	can	define	this	value	or	select	it	from
predefined	ones	programmed	into	Wireshark.

4.	 Your	complete	filter	will	be	displayed	at	the	bottom	of	the	screen.
When	you’ve	finished,	click	OK	to	insert	it	into	the	filter	bar.

The	Display	Filter	Expression	dialog	is	great	for	novice	users,	but	once
you	 get	 the	 hang	 of	 things,	 you’ll	 find	 that	 manually	 entering	 filter
expressions	 greatly	 increases	 your	 efficiency.	 The	 display	 filter	 expression
syntax	structure	is	simple,	yet	extremely	powerful.

The	Filter	Expression	Syntax	Structure

When	 you	 begin	 using	Wireshark	more,	 you	 will	 want	 to	 start	 using	 the
display	 filter	 syntax	directly	 in	 the	main	window	to	 save	 time.	Fortunately,
the	 syntax	used	 for	display	 filters	 follows	 a	 standard	 scheme	and	 is	 easy	 to
navigate.	 In	 most	 cases,	 this	 scheme	 is	 protocol-centric	 and	 follows	 the
format	 protocol.feature.subfeature,	 as	 you	 saw	 when	 looking	 at	 the
Display	Filter	Expression	dialog.	Now	we	will	look	at	a	few	examples.

You	will	most	often	use	a	capture	or	display	 filter	 to	see	packets	based
on	 a	 specific	 protocol	 alone.	 For	 example,	 say	 you	 are	 troubleshooting	 a
TCP	problem	and	you	want	to	see	only	TCP	traffic	in	a	capture	file.	If	so,	a
simple	tcp	filter	will	do	the	job.

Now	let’s	look	at	things	from	the	other	side	of	the	fence.	Imagine	that	in
the	 course	of	 troubleshooting	your	TCP	problem,	 you	have	used	 the	ping
utility	 quite	 a	 bit,	 thereby	 generating	 a	 lot	 of	 ICMP	 traffic.	 You	 could
remove	 this	 ICMP	 traffic	 from	 your	 capture	 file	 with	 the	 filter	 expression



!icmp.
Comparison	operators	allow	you	to	compare	values.	For	example,	when

troubleshooting	TCP/IP	networks,	 you	will	 often	need	 to	 view	 all	 packets
that	reference	a	particular	IP	address.	The	equal	to	comparison	operator	(==)
will	 allow	 you	 to	 create	 a	 filter	 showing	 all	 packets	 with	 an	 IP	 address	 of
192.168.0.1:

ip.addr==192.168.0.1

Now	suppose	that	you	need	to	view	only	packets	that	are	less	than	128
bytes.	You	can	use	the	less	than	or	equal	to	operator	(<=)	to	accomplish	this
goal:

frame.len<=128

Table	4-4	shows	Wireshark’s	comparison	operators.

Table	4-4:	Wireshark	Filter	Expression	Comparison	Operators

Operator Description

== Equal	to
!= Not	equal	to
> Greater	than
< Less	than
>= Greater	than	or	equal	to
<= Less	than	or	equal	to

Logical	operators	allow	you	to	combine	multiple	filter	expressions	into
one	 statement,	dramatically	 increasing	 the	effectiveness	of	 your	 filters.	For
example,	 say	 that	 you’re	 interested	 in	 displaying	 only	 packets	 to	 two	 IP
addresses.	 You	 can	 use	 the	 or	 operator	 to	 create	 one	 expression	 that	 will
display	packets	containing	either	IP	address,	like	this:

ip.addr==192.168.0.1 or ip.addr==192.168.0.2

Table	4-5	lists	Wireshark’s	logical	operators.

Table	4-5:	Wireshark	Filter	Expression	Logical	Operators



Operator Description

and Both	conditions	must	be	true.
or Either	one	of	the	conditions	must	be	true.
xor One	and	only	one	condition	must	be	true.
not Neither	one	of	the	conditions	is	true.

Sample	Display	Filter	Expressions

Although	the	concepts	related	to	creating	filter	expressions	are	fairly	simple,
you	will	need	to	use	several	specific	keywords	and	operators	when	creating
new	filters	for	various	problems.	Table	4-6	shows	some	of	the	display	filters
that	 I	 use	most	 often.	For	 a	 complete	 list,	 see	 the	Wireshark	display	 filter
reference	at	http://www.wireshark.org/docs/dfref/.

Table	4-6:	Commonly	Used	Display	Filters

Filter Description

!tcp.port==3389 Filter	out	RDP	traffic
tcp.flags.syn==1 TCP	packets	with	the	SYN	flag	set
tcp.flags.reset==1 TCP	packets	with	the	RST	flag	set
!arp Clear	ARP	traffic
http All	HTTP	traffic
tcp.port==23 || tcp.port==21 Telnet	or	FTP	traffic
smtp || pop || imap Email	traffic	(SMTP,	POP,	or	IMAP)

Saving	Filters

Once	you	begin	creating	a	lot	of	capture	and	display	filters,	you	will	find	that
you	use	certain	ones	frequently.	Fortunately,	you	don’t	need	to	type	these	in
each	time	you	want	to	use	them,	because	Wireshark	lets	you	save	your	filters
for	later	use.	To	save	a	custom	capture	filter,	follow	these	steps:

http://www.wireshark.org/docs/dfref/


1.	 Select	Capture	▶	Capture	Filters	to	open	the	Capture	Filter	dialog.

2.	 Create	a	new	filter	by	clicking	the	plus	(+)	button	on	the	lower	left	side
of	the	dialog.

3.	 Enter	a	name	for	your	filter	in	the	Filter	Name	box.

4.	 Enter	the	actual	filter	expression	in	the	Filter	String	box.

5.	 Click	the	OK	button	to	save	your	filter	expression	in	the	list.

To	save	a	custom	display	filter,	follow	these	steps:

1.	 Type	your	filter	into	the	Filter	bar	above	the	Packet	List	pane	in	the
main	window	and	click	the	ribbon	button	on	the	left	side	of	the	bar.

2.	 Click	the	Save	this	Filter	option,	and	a	list	of	saved	display	filters	will
be	presented	in	a	separate	dialog.	There	you	can	provide	a	name	for
your	filter	before	clicking	OK	to	save	it	(Figure	4-18).

Figure	4-18:	You	can	save	display	filters	directly	from	the	main	toolbar.



Adding	Display	Filters	to	a	Toolbar

If	you	have	filters	that	you	find	yourself	flipping	on	and	off	frequently,	one
of	the	easiest	ways	to	interact	with	them	is	to	add	filter	toggles	to	the	Filter
bar	just	above	the	Packet	List	pane.	To	do	this,	complete	the	following	steps:

1.	 Type	your	filter	into	the	Filter	bar	above	the	Packet	List	pane	in	the
main	window	and	click	the	plus	(+)	button	on	the	right	side	of	the	bar.

2.	 A	new	bar	will	display	below	the	Filter	bar	where	you	can	provide	a
name	for	your	filter	in	the	Label	field	(Figure	4-19).	This	is	the	label
that	will	be	used	to	represent	the	filter	on	the	toolbar.	Once	you’ve
input	something	in	this	field,	click	OK	to	create	a	shortcut	to	this
expression	in	the	Filter	toolbar.

Figure	4-19:	Adding	a	filter	expression	shortcut	to	the	Filter	toolbar

As	you	can	see	 in	Figure	4-20,	we’ve	created	a	 shortcut	 to	a	 filter	 that
will	quickly	show	any	TCP	packets	with	the	RST	flag	enabled.	Additions	to
the	filtering	toolbar	are	saved	to	your	configuration	profile	 (as	discussed	 in
Chapter	3),	making	them	a	powerful	way	to	enhance	your	ability	to	identify
problems	in	packet	captures	in	various	scenarios.

Figure	4-20:	Filtering	using	a	toolbar	shortcut

Wireshark	 includes	 several	 built-in	 filters	 that	 are	 great	 examples	 of
what	 a	 filter	 should	 look	 like.	 You’ll	 want	 to	 use	 them	 (together	with	 the
Wireshark	 help	 pages)	when	 creating	 your	 own	 filters.	We’ll	 use	 filters	 in
examples	throughout	this	book.



5
ADVANCED	WIRESHARK	FEATURES

Once	 you	 master	 the	 basics	 of	 Wireshark,	 the	 next
step	 is	 to	 delve	 into	 its	 analysis	 and	 graphing
capabilities.	In	this	chapter,	we’ll	look	at	some	of	these
powerful	 features,	 including	 the	 Endpoints	 and
Conversations	 windows,	 the	 finer	 points	 of	 name
resolution,	 protocol	 dissection,	 stream	 interpretation,
IO	 graphing,	 and	 more.	 These	 features,	 which	 are	 unique	 to
Wireshark	 as	 a	 graphical	 analysis	 tool,	 are	 useful	 at	multiple	 stages	 in	 the
analysis	process.	Make	 sure	 to	at	 least	attempt	 to	use	all	 the	 features	 listed
here	before	moving	on,	because	we’ll	 revisit	 them	frequently	as	we	 look	at
practical	analysis	scenarios	throughout	the	rest	of	the	book.

Endpoints	and	Network	Conversations

For	network	communication	to	take	place,	data	must	be	flowing	between	at
least	 two	 devices.	 Each	 device	 sending	 or	 receiving	 data	 on	 the	 network
represents	 what	Wireshark	 calls	 an	 endpoint.	 The	 communication	 between
two	 endpoints	 is	 called	 a	 conversation.	 Wireshark	 describes	 endpoints	 and



conversations	based	on	 the	 attributes	of	 the	 communication,	 specifically	 in
terms	of	the	addresses	used	within	various	protocols.

Endpoints	 are	 identified	 by	 multiple	 addresses,	 which	 are	 assigned	 at
different	 layers	 of	 the	OSI	model.	 For	 example,	 at	 the	 data	 link	 layer,	 an
endpoint	will	have	a	MAC	address,	which	is	a	unique	address	built	into	the
device	 (although	 it	 can	 be	 modified,	 potentially	 making	 it	 no	 longer
required).	 At	 the	 network	 layer,	 however,	 the	 endpoint	 will	 have	 an	 IP
address,	which	 can	 be	 changed	 at	 any	 point.	We’ll	 discuss	 in	 the	 next	 few
chapters	how	these	types	of	addresses	are	used.

Figure	 5-1	 shows	 two	 examples	 of	 how	 addresses	 are	 used	 to	 identify
endpoints	 in	 conversations.	 Conversation	 A	 in	 the	 figure	 consists	 of	 two
endpoints	 communicating	 at	 the	 data	 link	 (MAC)	 layer.	Endpoint	A	 has	 a
MAC	 address	 of	 00:ff:ac:ce:0b:de,	 and	 Endpoint	 B	 has	 a	MAC	 address	 of
00:ff:ac:e0:dc:0f.	Conversation	B	is	defined	by	two	devices	communicating	at
the	network	 (IP)	 layer.	Endpoint	A	has	an	 IP	address	of	192.168.1.25,	 and
Endpoint	B	has	an	address	of	192.168.1.30.

Figure	5-1:	Endpoints	and	conversations	on	a	network

Let’s	 look	 at	 how	Wireshark	 can	 provide	 information	 about	 network
communication	on	a	per	endpoint	or	conversation	basis.

Viewing	Endpoint	Statistics

lotsofweb.pcapng



When	 analyzing	 traffic,	 you	may	 find	 that	 you	 can	 pinpoint	 a	 problem	 as
being	at	a	specific	endpoint	on	a	network.	For	example,	open	the	capture	file
lotsofweb.pcapng	 and	 open	 Wireshark’s	 Endpoints	 window	 (Statistics	 ▶
Endpoints).	This	window	shows	several	helpful	statistics	for	each	endpoint,
as	shown	in	Figure	5-2,	including	the	address,	number	of	packets,	and	bytes
transmitted	and	received.

Figure	5-2:	The	Endpoints	window	lets	you	view	each	endpoint	in	a	capture	file.

The	 tabs	 at	 the	 top	 of	 the	 window	 (TCP,	 Ethernet,	 IPv4,	 IPv6,	 and
UDP)	show	the	number	of	endpoints	organized	by	protocol.	To	display	only
endpoints	 for	 a	 specific	 protocol,	 click	 one	 of	 these	 tabs.	 You	 can	 add
additional	protocol-filtering	tabs	by	clicking	the	Endpoint	Types	box	at	the
bottom	right	of	 the	 screen	and	selecting	 the	protocol	 to	add.	 If	you	would
like	 to	 use	 name	 resolution	 to	 view	 endpoint	 addresses	 (see	 “Name
Resolution”	 on	 page	 84),	 check	 the	 Name	 resolution	 checkbox.	 If	 you’re
dealing	with	a	large	capture	and	want	to	filter	the	endpoints	displayed,	you



can	apply	a	display	filter	in	the	main	Wireshark	window	and	select	the	Limit
to	display	filter	option	in	the	Endpoints	window.	This	option	will	make	the
window	show	only	the	endpoints	matching	the	display	filter.

Another	handy	 feature	of	 the	Endpoints	window	 is	 the	 ability	 to	 filter
out	specific	packets	for	display	in	the	Packet	List	pane.	This	is	a	quick	way	to
drill	 down	 into	 the	 packets	 of	 an	 individual	 endpoint.	 Right-click	 an	 end-
point	to	select	the	available	filtering	options.	The	dialog	that	appears	will	let
you	 show	 or	 exclude	 packets	 related	 to	 the	 selected	 input.	 You	 can	 also
choose	 the	 Colorize	 option	 in	 this	 dialog	 to	 export	 the	 endpoint	 address
directly	 into	a	colorization	rule	 (coloring	rules	are	discussed	 in	Chapter	4).
In	this	way,	you	can	quickly	highlight	packets	related	to	a	given	endpoint	so
you	can	spot	them	quickly	during	analysis.

Viewing	Network	Conversations

lotsofweb.pcapng

With	lotsofweb.pcapng	still	open,	access	the	Wireshark	Conversations	window
Statistics	▶	Conversations	 (Figure	5-3)	to	display	all	 the	conversations	 in
the	 capture	 file.	 The	 Conversations	 window	 is	 similar	 to	 the	 Endpoints
window,	 but	 the	 Conversations	 window	 shows	 two	 addresses	 per	 line	 to
represent	a	conversation,	as	well	as	the	packets	and	bytes	transmitted	to	and
from	each	device.	The	column	Address	A	is	the	origin	endpoint,	and	Address
B	is	the	destination.



Figure	5-3:	The	Conversations	window	lets	you	dissect	each	conversation	in	a	capture	file.

The	 Conversation	 window	 is	 organized	 by	 protocol.	 To	 see	 only
conversations	using	a	particular	protocol,	click	one	of	the	tabs	at	the	top	of
the	window	(as	with	the	Endpoints	window)	or	add	other	protocol	types	by
clicking	 the	 Conversation	 Types	 button	 at	 the	 lower	 right.	 As	 with	 the
Endpoints	 window,	 you	 can	 use	 name	 resolution,	 limit	 the	 visible
conversations	using	a	display	filter,	and	right-click	a	specific	conversation	to
create	filters	based	on	specific	conversations.	Conversation-based	filters	are
useful	for	digging	into	the	details	of	interesting	communication	sequences.

Identifying	Top	Talkers	with	Endpoints	and	Conversations

lotsofweb.pcapng

The	 Endpoints	 and	 Conversations	 windows	 are	 helpful	 in	 network
troubleshooting,	 especially	 when	 you’re	 trying	 to	 locate	 the	 source	 of	 a
significant	amount	of	traffic	on	the	network.

As	an	example,	 let’s	 look	again	at	 lotsofweb.pcapng.	As	the	name	implies,
this	 capture	 file	 contains	 HTTP	 traffic	 generated	 by	 multiple	 clients
browsing	 the	 internet.	Figure	5-4	 shows	 a	 list	 of	 endpoints	 in	 this	 capture
file	sorted	by	number	of	bytes.



Notice	that	the	endpoint	responsible	for	the	most	traffic	(by	bytes)	is	the
address	172.16.16.128.	This	is	an	internal	network	address	(we’ll	cover	how
that	is	determined	in	Chapter	7),	and,	as	the	device	responsible	for	the	most
communication	in	this	capture,	it	is	given	the	designation	top	talker.

Figure	5-4:	The	Endpoints	window	shows	which	hosts	are	talking	the	most.

The	address	with	the	second	highest	amount	of	traffic	is	74.125.103.163,
an	external	 (internet)	address.	When	you	encounter	external	addresses	 that
you	don’t	know	anything	about,	you	can	search	the	WHOIS	registry	to	find
the	 registered	 owner.	 In	 this	 case,	 the	 American	 Registry	 for	 Internet
Numbers	(https://whois.arin.net/ui/)	reveals	that	Google	owns	this	IP	address,
as	seen	in	Figure	5-5.

https://whois.arin.net/ui/


Figure	5-5:	Viewing	WHOIS	results	for	74.125.103.163	points	to	a	Google	IP.

DETERMING	IP	ADDRESS	OWNERSHIP	WITH	WHOIS
IP	address	assignments	are	managed	by	different	entities	based	on	their
geographic	 location.	ARIN	 is	 responsible	 for	 IP	address	 assignment	 in
the	United	States	and	some	surrounding	areas,	while	AfriNIC	manages
those	 in	 Africa,	 RIPE	 handles	 Europe,	 and	 APNIC	 manages
Asia/Pacific.	Generally,	you	would	perform	a	WHOIS	for	an	IP	at	the
website	of	the	registry	responsible	for	that	IP.	Of	course,	just	by	looking
at	 an	 address,	 you	 are	 unlikely	 to	 know	 which	 regional	 registry	 is
responsible	 for	 it.	Websites	 like	 Robtex	 (http://robtex.com/)	 will	 do	 the
hard	 work	 for	 you	 and	 query	 the	 correct	 registry	 to	 provide	 results.
However,	 if	you	at	 first	query	 the	wrong	registry,	you	will	 typically	be
pointed	to	the	correct	one.

Given	this	information,	you	could	assume	either	that	172.16.16.128	and
74.125.103.163	are	communicating	a	lot	with	multiple	other	devices	on	their

http://robtex.com/


own	or	that	both	endpoints	are	communicating	with	each	other.	In	fact,	as	is
often	 the	 case	 with	 top-talking	 endpoint	 pairs,	 the	 endpoints	 are
communicating	with	 each	 other.	To	 confirm	 this,	 open	 the	Conversations
window,	select	the	IPv4	tab,	and	sort	the	list	by	bytes.	You	should	see	that
these	two	endpoints	comprise	the	conversation	with	the	highest	number	of
transferred	bytes.	The	pattern	of	transfer	suggests	a	large	download,	because
the	number	of	bytes	transmitted	from	external	Address	A	(74.125.103.163)	is
much	greater	than	the	number	of	bytes	transmitted	from	internal	Address	B
(172.16.16.128),	as	shown	in	Figure	5-6.

Figure	5-6:	The	Conversations	window	confirms	that	the	two	top	talkers	are	communicating	with
each	other.

You	can	examine	this	conversation	by	applying	this	display	filter:

ip.addr == 74.125.103.163 && ip.addr == 172.16.16.128

If	you	scroll	through	the	list	of	packets,	you’ll	see	several	DNS	requests
to	 the	 youtube.com	 domain	 in	 the	 Info	 column	 of	 the	 Packet	 List	 window.
This	 is	consistent	with	our	 finding	 that	74.125.103.163	 is	a	Google-owned
IP	address,	because	Google	owns	YouTube.

You’ll	 see	 how	 to	 use	 the	 Endpoints	 and	 Conversations	 windows	 in
practical	scenarios	throughout	the	remaining	chapters	of	this	book.

http://youtube.com


Protocol	Hierarchy	Statistics

lotsofweb.pcapng

When	 dealing	 with	 unfamiliar	 capture	 files,	 you’ll	 sometimes	 need	 to
determine	the	distribution	of	traffic	by	protocol.	That	is,	what	percentage	of
a	capture	is	TCP,	IP,	DHCP,	and	so	on?	Rather	than	counting	packets	and
totaling	 the	 results,	Wireshark’s	 Protocol	Hierarchy	 Statistics	window	 can
provide	this	information	for	you.

For	example,	with	the	 lotsofweb.pcapng	 file	still	open	and	any	previously
applied	 filters	 cleared,	 open	 the	 Protocol	 Hierarchy	 Statistics	 window,	 as
shown	in	Figure	5-7,	by	choosing	Statistics	▶	Protocol	Hierarchy.

Figure	5-7:	The	Protocol	Hierarchy	Statistics	window	shows	the	distribution	of	traffic	by	protocol.

The	Protocol	Hierarchy	Statistics	window	gives	 you	 a	 snapshot	of	 the
type	 of	 activity	 occurring	 on	 a	 network.	 In	 Figure	 5-7,	 100	 percent	 is
Ethernet	traffic,	99.7	percent	is	IPv4,	98	percent	is	TCP,	and	13.5	percent	is



HTTP	 from	 web	 browsing.	 This	 information	 provides	 a	 great	 way	 to
benchmark	your	network,	especially	once	you	have	a	mental	picture	of	what
your	 network	 traffic	 usually	 looks	 like.	 For	 instance,	 if	 you	 know	 that	 10
percent	 of	 your	 network	 traffic	 is	 normally	 ARP	 traffic,	 but	 you	 see	 50
percent	ARP	traffic	in	a	recent	capture,	then	something	might	be	wrong.	In
some	cases,	the	mere	existence	of	a	protocol	could	be	of	interest.	If	you	don’t
have	any	devices	configured	to	use	Spanning	Tree	Protocol	(STP),	seeing	it
in	a	protocol	hierarchy	might	mean	that	a	device	is	misconfigured.

Over	time,	you’ll	find	that	you	can	use	the	Protocol	Hierarchy	Statistics
window	to	profile	 the	users	and	devices	on	a	network	simply	by	 looking	at
the	distribution	of	protocols	in	use.	For	example,	a	higher	amount	of	HTTP
traffic	will	tell	you	that	there’s	a	lot	of	web	browsing	going	on.	You	may	also
find	that	you	can	identify	specific	devices	on	the	network	simply	by	looking
at	 the	 traffic	 from	 a	 network	 segment	 belonging	 to	 a	 business	 unit.	 For
example,	the	IT	department	might	use	more	administrative	protocols	such	as
ICMP	or	SNMP,	customer	service	might	be	responsible	for	a	high	volume
of	 SMTP	 (email)	 traffic,	 and	 the	 pesky	 intern	 in	 the	 corner	 might	 be
flooding	the	network	with	World	of	Warcraft	traffic!

Name	Resolution
Network	 data	 is	 sent	 between	 endpoints	 with	 the	 help	 of	 various
alphanumeric	addressing	systems	 that	are	often	 too	 long	or	complicated	 to
remember,	 such	 as	 MAC	 address	 00:16:ce:6e:8b:24,	 IPv4	 address
192.168.47.122,	or	 IPv6	address	2001:db8:a0b:12f0::1.	Name	resolution	 (also
called	name	lookup)	converts	one	identifying	address	into	another,	mostly	for
the	sake	of	making	the	address	easier	to	remember.	For	example,	 it’s	much
easier	 to	 remember	 google.com	 than	 to	 remember	 216.58.217.238.	 By
associating	easy-to-read	names	with	 these	cryptic	addresses,	we	make	 them
easier	to	remember	and	identify.

Enabling	Name	Resolution

Wireshark	 can	 use	 name	 resolution	 when	 it	 displays	 packet	 data	 to	 make
analysis	 easier.	 To	 have	 Wireshark	 use	 name	 resolution,	 choose	 Edit	 ▶
Preferences	▶	Name	Resolution.	 This	 window	 is	 shown	 in	 Figure	 5-8.

http://google.com


Here	are	the	primary	options	available	in	Wireshark	for	name	resolution:

Resolve	 MAC	 addresses	 	 	 Uses	 the	 ARP	 protocol	 to	 attempt	 to
convert	layer	2	MAC	addresses,	such	as	00:09:5b:01:02:03,	into	layer	3
addresses,	 such	 as	 10.100.12.1.	 If	 attempts	 at	 these	 conversions	 fail,
Wireshark	 will	 use	 the	 ethers	 file	 in	 its	 program	 directory	 to	 attempt
conversion.	Wireshark’s	last	resort	is	to	convert	the	first	3	bytes	of	the
MAC	address	into	the	device’s	IEEE-specified	manufacturer	name,	such
as	Netgear_01:02:03.
Resolve	transport	names	 	 	Attempts	to	convert	a	port	number	into	a
name	associated	with	it,	for	example,	to	display	port	80	as	http.	This	is
handy	when	 you	 encounter	 an	 uncommon	 port	 and	 don’t	 know	what
service	is	typically	associated	with	it.
Resolve	 network	 (IP)	 addresses	 	 	 Attempts	 to	 convert	 a	 layer	 3
address,	such	as	192.168.1.50,	into	an	easy-to-read	DNS	name,	such	as
MarketingPC1.domain.com.	This	is	helpful	for	identifying	the	purpose	or
owner	of	a	system,	assuming	it	has	a	descriptive	name.

http://MarketingPC1.domain.com


Figure	5-8:	Enabling	name	resolution	in	the	Preferences	dialog.	Only	Resolve	MAC	addresses	is
selected	amongst	the	first	three	checkboxes	pertaining	to	types	of	name	resolution.

The	Name	Resolution	preferences	dialog	 in	Figure	5-8	 includes	 a	 few
other	useful	options:

Use	captured	DNS	packet	data	for	address	resolution			Parses	DNS
data	from	captured	DNS	packets	to	resolve	IP	addresses	to	DNS	names.
Use	 an	 external	 network	 name	 resolver	 	 	 Allows	 Wireshark	 to
generate	 queries	 to	 the	DNS	 server	 used	 by	 your	 analysis	machine	 in
order	to	resolve	IP	addresses	to	DNS	names.	This	is	helpful	if	you	want
to	use	DNS	name	resolution	but	the	capture	you	are	analyzing	doesn’t
contain	the	relevant	DNS	packets.
Maximum	 concurrent	 requests	 	 	 Rate	 limits	 the	 number	 of
concurrent	 DNS	 queries	 that	 can	 be	 outstanding	 at	 once.	 Use	 this
option	 if	 your	 capture	will	 generate	 a	 lot	of	DNS	 requests	 and	you’re
concerned	 about	 taking	 up	 too	 much	 bandwidth	 on	 your	 network	 or
DNS	server.
Only	use	the	profile	“hosts”	file			Limits	DNS	resolution	to	the	host
file	associated	with	the	active	Wireshark	profile.	I’ll	describe	how	to	use
this	file	later	in	this	section.

The	changes	made	in	the	Preferences	screen	will	persist	after	Wireshark
is	closed	and	reopened.	To	make	name	resolution	changes	on	the	fly	without
them	being	persistent,	toggle	name	resolution	settings	on	or	off	by	clicking
View	 ▶	 Name	 Resolution	 on	 the	 main	 drop-down	 menu.	 You	 have	 the
option	of	enabling	or	disabling	name	resolution	for	physical,	transport,	and
network	addresses.

You	can	leverage	the	various	name	resolution	tools	to	make	your	capture
files	 more	 readable	 and	 to	 save	 a	 lot	 of	 time	 in	 certain	 situations.	 For
example,	you	can	use	DNS	name	resolution	to	help	readily	identify	the	name
of	a	computer	you	are	trying	to	pinpoint	as	the	source	of	a	particular	packet.

Potential	Drawbacks	to	Name	Resolution

Given	 its	 benefits,	 using	 name	 resolution	may	 seem	 like	 a	 no-brainer,	 but
there	are	some	potential	drawbacks.	First,	network	name	resolution	can	fail
if	there	is	no	DNS	server	available	to	provide	the	name	associated	with	an	IP



address.	Name	resolution	 information	 is	not	saved	with	 the	capture	 file,	 so
the	 resolution	 process	 must	 take	 place	 every	 time	 you	 open	 a	 file.	 If	 you
capture	 packets	 on	 one	 network	 and	 then	 open	 the	 capture	 on	 another
network,	then	your	system	might	not	be	able	to	access	the	DNS	servers	from
the	source	network	and	name	resolution	will	fail.

In	 addition,	 name	 resolution	 requires	 additional	 processing	 overhead.
When	dealing	with	 a	 very	 large	 capture	 file,	 you	may	want	 to	 forgo	name
resolution	 to	conserve	 system	resources.	 If	 you	 try	 to	open	a	 large	capture
and	 find	 your	 system	 struggling	 to	 load	 it	 or	Wireshark	 crashes,	 disabling
name	resolution	might	help.

One	 further	 issue	 is	 that	 network	 name	 resolution’s	 reliance	 on	DNS
may	generate	unwanted	packets	that	will	cloud	your	capture	file	as	traffic	is
sent	to	DNS	servers	to	resolve	addresses.	Complicating	things	further,	if	the
capture	file	you	are	analyzing	contains	malicious	IP	addresses,	attempting	to
resolve	 them	 could	 generate	 queries	 to	 attacker-controlled	 infrastructure
that	 could	 tip	 off	 an	 attacker	 that	 you	 are	 aware	 of	 their	 actions,	 possibly
making	you	a	 target.	To	 reduce	 the	 risk	of	 clouding	your	packet	 file	or	of
unwittingly	 communicating	 with	 an	 attacker,	 disable	 the	 Use	 an	 external
network	name	resolver	option	in	the	Name	Resolution	Preferences	dialog.

Using	a	Custom	hosts	File

It	can	be	tedious	to	keep	track	of	traffic	from	multiple	hosts	in	large	capture
files,	especially	when	external	host	resolution	isn’t	available.	One	way	to	help
is	 to	manually	 label	 systems	based	on	 their	 IP	 addresses	with	 a	Wireshark
hosts	file,	which	is	a	text	file	with	a	list	of	IP	address	to	name	mappings.	You
can	 use	 a	 hosts	 file	 to	 label	 addresses	 in	Wireshark	 with	 names	 for	 quick
reference.	These	names	will	be	shown	in	the	Packet	List	pane.

To	use	a	hosts	file,	follow	these	steps:

1.	 Choose	Edit	▶	Preferences	▶	Name	Resolution	and	select	Only	use
the	profile	“hosts”	file.

2.	 Create	a	new	file	using	Windows	Notepad	or	a	similar	text	editor.	The
file	should	contain	one	entry	per	line	with	an	IP	address	and	the	name
to	resolve	to,	as	shown	in	Figure	5-9.	The	name	you	choose	on	the	right
will	be	what	is	shown	in	the	packet	list	window	whenever	Wireshark



encounters	the	IP	address	on	the	left.

Figure	5-9:	Creating	a	Wireshark	hosts	file

3.	 Save	the	file	as	a	plaintext	file	with	the	name	hosts	to	the	appropriate
directory,	as	listed	below.	Be	sure	that	the	file	has	no	extension!
•					Windows:	<USERPROFILE>\Application	Data\Wireshark\hosts
•					OS	X:	/Users/<username>/.wireshark/hosts
•					Linux:	/home/<username>/.wireshark/hosts

Now	 open	 a	 capture,	 and	 any	 IP	 addresses	 in	 your	 hosts	 file	 should
resolve	 to	 the	 specified	 names,	 as	 shown	 in	 Figure	 5-10.	 Instead	 of	 IP
addresses	in	the	Source	and	Destination	columns	of	the	packet	list	window,
more	meaningful	names	are	shown.

Figure	5-10:	Name	resolution	from	a	hosts	file	in	Wireshark

Using	 hosts	 files	 in	 this	 way	 can	 dramatically	 improve	 your	 ability	 to
recognize	 certain	 hosts	 during	 analysis.	 When	 working	 with	 a	 team	 of
analysts,	consider	sharing	a	hosts	file	of	known	assets	among	your	networking
staff.	 This	 will	 help	 your	 team	 quickly	 recognize	 systems	 with	 static
addresses,	such	as	servers	and	routers.

NOTE

If	your	hosts	file	doesn’t	appear	to	be	working,	make	sure	that	you	haven’t
accidentally	added	a	file	extension	to	the	filename.	The	file’s	name	should
simply	be	hosts.



Manually	Initiated	Name	Resolution

Wireshark	also	has	the	ability	to	force	name	resolution	on	a	temporary,	on-
demand	basis.	This	is	done	by	right-clicking	a	packet	in	the	Packet	List	pane
and	choosing	the	Edit	Resolved	Name	option.	The	window	that	pops	up	will
allow	you	to	specify	a	name	for	an	address,	like	a	label.	This	resolution	will
be	 lost	once	 the	 capture	 file	 is	 closed,	making	 this	 a	quick	way	 to	 label	 an
address	 without	 making	 any	 permanent	 changes	 that	 would	 have	 to	 be
reverted	 later.	 I	 use	 this	 technique	 often	 because	 it	 is	 a	 little	 easier	 than
manually	editing	a	hosts	file	for	every	packet	capture	I	look	at.

Protocol	Dissection
One	of	Wireshark’s	biggest	strengths	is	its	support	for	the	analysis	of	over	a
thousand	protocols.	Wireshark	has	this	capability	because	it	is	open	source,
thus	 providing	 a	 framework	 for	 creating	 protocol	 dissectors.	 These	 allow
Wireshark	 to	 recognize	 and	 decode	 a	 protocol	 into	 various	 fields	 so	 the
protocol	 can	 be	 displayed	 in	 the	 user	 interface.	 Wireshark	 uses	 several
dissectors	 in	 unison	 to	 interpret	 each	 packet.	 For	 example,	 the	 ICMP
protocol	dissector	allows	Wireshark	to	recognize	that	an	IP	packet	contains
ICMP	data,	pull	out	 the	 ICMP	 type	and	code,	 and	 format	 those	 fields	 for
display	in	the	Info	column	of	the	Packet	List	pane.

You	can	think	of	a	dissector	as	the	translator	between	raw	data	and	the
Wireshark	program.	For	a	protocol	 to	be	supported	by	Wireshark,	 it	must
have	a	dissector	(or	you	can	write	your	own).

Changing	the	Dissector

wrongdissector.pcapng

Wireshark	uses	dissectors	 to	detect	 individual	protocols	and	decide	how	to
display	network	information.	Unfortunately,	Wireshark	doesn’t	always	make
the	 right	 choices	 when	 selecting	 the	 dissector	 to	 use	 on	 a	 packet.	 This	 is
especially	 true	 when	 a	 protocol	 on	 the	 network	 is	 using	 a	 nonstandard
configuration,	 such	 as	 a	 non-default	 port	 (which	 is	 often	 configured	 by



network	 administrators	 as	 a	 security	 precaution	 or	 by	 employees	 trying	 to
circumvent	access	controls).

When	Wireshark	incorrectly	applies	dissectors,	it’s	possible	to	override
this	selection.	For	example,	open	the	trace	file	wrongdissector.pcapng.	This	file
contains	a	bunch	of	SSL	communication	between	two	computers.	SSL	is	the
Secure	Socket	Layer	protocol,	which	 is	used	 for	encrypted	communication
between	 hosts.	 Under	 most	 normal	 circumstances,	 viewing	 SSL	 traffic	 in
Wireshark	won’t	yield	much	usable	information	due	to	its	encrypted	nature.
However,	 there	 is	 something	 definitely	 wrong	 here.	 If	 you	 peruse	 the
contents	 of	 several	 of	 these	 packets	 by	 clicking	 them	 and	 examining	 the
Packet	Bytes	pane,	you	will	find	plaintext	traffic.	In	fact,	if	you	look	at	packet
4,	 you	will	 find	mention	of	 the	FileZilla	FTP	server	 application.	The	next
few	packets	clearly	display	a	request	and	response	for	both	a	username	and	a
password.

If	this	were	actually	SSL	traffic,	you	wouldn’t	be	able	to	read	any	of	the
data	 contained	 in	 the	 packets,	 and	 you	 certainly	wouldn’t	 see	 all	 the	 user-
names	and	passwords	transmitted	in	clear	text,	as	in	Figure	5-11.	Given	the
information	shown	here,	it’s	safe	to	assume	that	this	is	probably	FTP	traffic,
rather	 than	SSL	 traffic.	Wireshark	 is	 likely	 interpreting	 this	 traffic	 as	 SSL
because	it	is	using	port	443,	as	seen	under	the	Info	column,	and	port	443	is
the	standard	port	used	for	HTTPS	(HTTP	over	SSL).



Figure	5-11:	Plaintext	usernames	and	passwords?	This	looks	more	like	FTP	than	SSL!

To	fix	this	problem,	you	can	apply	a	forced	decode	to	Wireshark	to	use	the
FTP	protocol	dissector	on	these	packets.	Here	are	the	steps:

1.	 Right-click	an	SSL	packet	(such	as	packet	30)	in	the	Protocol	column
and	select	Decode	As,	which	opens	a	new	dialog.

2.	 Tell	Wireshark	to	decode	all	TCP	port	443	traffic	as	FTP	by	selecting
TCP	port	in	the	Field	column,	entering	443	in	the	Value	column,	and
selecting	FTP	from	the	drop-down	menu	in	the	Current	column,	as
shown	in	Figure	5-12.

Figure	5-12:	The	Decode	As...	dialog	allows	you	to	create	forced	decodes.



3.	 Click	OK	to	see	the	changes	immediately	applied	to	the	capture	file.

The	data	will	be	decoded	as	FTP	traffic	so	you	can	analyze	it	from	the
Packet	List	pane	without	needing	to	dig	deep	 into	 individual	bytes	 (Figure
5-13).

Figure	5-13:	Viewing	properly	decoded	FTP	traffic

The	 forced	 decode	 feature	 can	 be	 used	 multiple	 times	 in	 the	 same
capture	file.	Wireshark	will	keep	track	of	your	forced	decodes	for	you	in	the
Decode	As...	dialog,	where	you	can	view	and	edit	all	of	 the	 forced	decodes
you	have	created	so	far.

By	default,	forced	decodes	are	not	saved	when	you	close	a	capture.	You
can	remedy	this	by	clicking	the	Save	button	in	the	Decode	As...	dialog.	This
will	save	the	protocol-decoding	rules	to	your	current	Wireshark	user	profile;
they	 will	 be	 applied	 when	 you	 open	 any	 capture	 using	 that	 profile.	 Saved
decode	rules	can	be	removed	by	clicking	the	minus	button	in	the	dialog.

It’s	 very	 easy	 to	 save	 decoding	 rules	 and	 forget	 about	 them.	This	 can
lead	to	a	lot	of	confusion	when	you	aren’t	prepared	for	it,	so	be	mindful	of
forced	 decodes.	 To	 prevent	myself	 from	 falling	 victim	 to	 this	 oversight,	 I
generally	avoid	saving	forced	decodes	to	my	primary	Wireshark	profile.

Viewing	Dissector	Source	Code

The	beauty	 of	working	with	 an	 open	 source	 application	 is	 that,	 if	 you	 are
confused	about	why	something	is	happening,	you	can	look	at	the	source	code
and	 find	 out	 why.	 This	 really	 comes	 in	 handy	 when	 you	 are	 trying	 to



determine	 why	 a	 particular	 protocol	 has	 been	 interpreted	 incorrectly,
because	you	can	examine	individual	protocol	dissectors.

Examining	 the	 source	code	of	protocol	dissectors	 can	be	done	directly
from	 the	 Wireshark	 website	 by	 clicking	 the	 Develop	 link	 and	 clicking
Browse	the	Code.	This	link	will	send	you	to	the	Wireshark	code	repository,
where	 you	 can	 view	 the	 release	 code	 for	 recent	Wireshark	 versions.	 The
protocol	 dissectors	 are	 in	 the	 epan/dissectors	 folder,	 and	 each	 dissector	 is
labeled	packets-<protocolname>.c.

These	 files	 can	 be	 rather	 complex,	 but	 they	 all	 follow	 a	 standard
template	 and	 tend	 to	 be	 commented	 very	 well.	 You	 don’t	 need	 to	 be	 an
expert	C	programmer	to	understand	the	basic	function	of	each	dissector.	If
you	want	to	get	a	deep	understanding	of	what	you	are	seeing	in	Wireshark,	I
recommend	taking	a	look	at	dissectors	for	some	of	the	simpler	protocols.

Following	Streams

http_google.pcapng

One	 of	 Wireshark’s	 most	 satisfying	 analysis	 features	 is	 its	 ability	 to
reassemble	 data	 from	multiple	 packets	 into	 a	 consolidated,	 easily	 readable
format,	often	called	a	packet	transcript.	So	you	don’t	have	to	view	data	being
sent	 from	 client	 to	 server	 in	 a	 bunch	 of	 small	 chunks	while	 clicking	 from
packet	to	packet,	stream	following	sorts	the	data	to	make	it	easier	to	view.

Four	types	of	streams	are	available	to	follow:

TCP	stream			Assembles	data	from	protocols	that	utilize	TCP,	such	as
HTTP	and	FTP.
UDP	stream			Assembles	data	from	protocols	that	utilize	UDP,	such	as
DNS.
SSL	stream			Assembles	data	from	protocols	that	are	encrypted,	such	as
HTTPS.	You	must	supply	keys	to	decrypt	the	traffic.
HTTP	 stream	 	 	 Assembles	 and	 decompresses	 data	 from	 the	HTTP
protocol.	 This	 is	 useful	 when	 following	HTTP	 data	 via	 TCP	 stream
doesn’t	decode	the	HTTP	payload	fully.

As	 an	 example,	 consider	 a	 simple	 HTTP	 transaction	 in	 the	 file



http_google.pcapng.	Click	any	of	the	TCP	or	HTTP	packets	in	the	file,	right-
click	the	packet,	and	choose	Follow	TCP	Stream.	This	will	consolidate	the
TCP	stream	and	open	the	conversation	transcript	in	a	separate	window,	as	in
Figure	5-14.

The	text	displayed	in	this	window	is	in	two	colors,	with	red	text	(shown
here	 with	 the	 lighter	 gray	 shading)	 signifying	 traffic	 from	 source	 to
destination	 and	 blue	 text	 (shown	 here	 with	 the	 darker	 gray	 shading)
identifying	traffic	in	the	opposite	direction,	from	destination	to	source.	The
color	relates	to	which	side	initiated	the	communication.	In	our	example,	the
client	initiated	the	connection	to	the	web	server,	so	it’s	displayed	in	red.

The	communication	in	the	TCP	stream	begins	with	an	initial	GET	request
for	the	web	root	directory	(/)	and	a	response	from	the	server	that	the	request
was	successful	in	the	form	of	an	HTTP/1.1 200 OK.	A	similar	pattern	is	repeated
throughout	 other	 streams	 in	 the	 packet	 capture	 as	 the	 client	 requests
individual	 files	 and	 the	 server	 responds	 with	 them.	 You	 are	 seeing	 a	 user
browsing	 to	 the	Google	home	page,	but	 instead	of	having	 to	 step	 through
every	packet,	 you’re	 able	 to	 scroll	 through	 the	 transcript	with	ease.	You’re
actually	seeing	what	the	end	user	is	seeing,	but	from	the	inside	out.



Figure	5-14:	The	Follow	TCP	Stream	window	reassembles	the	communication	in	an	easily	readable
format.

In	 addition	 to	 viewing	 the	 raw	 data	 in	 this	 window,	 you	 can	 search
within	the	text;	save	it	as	a	file;	print	it;	or	choose	to	view	the	data	in	ASCII,
EBCDIC,	 hex,	 or	 C	 array	 format.	 These	 options,	 which	 make	 digging
through	larger	sets	of	data	easier,	can	be	found	at	the	bottom	of	the	Follow
Stream	window.

Following	SSL	Streams

Following	 TCP	 and	 UDP	 streams	 is	 a	 simple	 two-click	 operation,	 but
viewing	 SSL	 streams	 in	 a	 readable	 format	 requires	 a	 few	 additional	 steps.
Because	 the	 traffic	 is	encrypted,	you	are	required	 to	 supply	 the	private	key
associated	with	the	server	responsible	for	the	encrypted	traffic.	The	method
you	will	use	to	retrieve	this	key	varies	depending	on	the	server	technology	in
use	and	is	beyond	the	scope	of	this	book,	but	once	you	have	it,	you	will	have
to	load	it	into	Wireshark	using	the	following	process:



1.	 Access	your	Wireshark	preferences	by	clicking	Edit	▶	Preferences.

2.	 Expand	the	Protocols	section	and	click	the	SSL	protocol	heading
(shown	in	Figure	5-15).	Click	the	Edit	button	next	to	the	RSA	keys	list
label.

3.	 Click	the	plus	(+)	button.

4.	 Supply	the	required	information.	This	includes	the	IP	address	of	the
server	responsible	for	the	encryption,	the	port,	the	protocol,	the
location	of	the	key	file,	and	a	password	for	the	key	file	if	one	was	used.

5.	 Restart	Wireshark.

Figure	5-15:	Adding	SSL	decryption	information

Once	this	process	is	complete,	you	should	be	able	to	capture	encrypted
traffic	between	a	client	and	server.	Right-click	an	HTTPS	packet	and	click
Follow	SSL	Stream	to	see	the	clear	text	transcript.

The	ability	to	view	packet	transcripts	is	one	of	the	most	commonly	used



analysis	 features	 in	Wireshark,	 and	 you	will	 come	 to	 rely	 on	 it	 to	 quickly
determine	what	specific	protocols	are	being	used	to	do.	We’ll	cover	several
additional	scenarios	in	later	chapters	that	rely	on	viewing	packet	transcripts.

Packet	Lengths

download-slow.pcapng

The	 size	 of	 a	 single	 packet	 or	 group	 of	 packets	 can	 tell	 you	 a	 lot	 about	 a
situation.	Under	normal	circumstances,	the	maximum	size	of	a	frame	on	an
Ethernet	network	 is	1,518	bytes.	When	you	subtract	 the	Ethernet,	 IP,	and
TCP	headers	 from	 this	 number,	 you	 are	 left	with	 1,460	 bytes	 that	 can	 be
used	 for	 the	 transmission	 of	 a	 layer	 7	 protocol	 header	 or	 for	 data.	 If	 you
know	the	minimum	requirements	for	packet	transmission,	you	can	begin	to
look	 at	 the	 distribution	 of	 packet	 lengths	 in	 a	 capture	 to	 make	 educated
guesses	 about	 the	 makeup	 of	 the	 traffic.	 This	 is	 immensely	 helpful	 for
attempting	to	understand	the	composition	of	 large	capture	files.	Wireshark
provides	 the	 Packet	 Lengths	 dialog	 for	 you	 to	 view	 the	 distribution	 of
packets	based	on	length.

Let’s	look	at	an	example	by	opening	the	file	download-slow.pcapng.	Once
it	 is	 open,	 select	 Statistics	▶	 Packet	 Lengths.	 The	 result	 is	 the	 Packet
Lengths	dialog	shown	in	Figure	5-16.



Figure	5-16:	The	Packet	Lengths	dialog	helps	you	make	educated	guesses	about	the	traffic	in	the
capture	file.

Pay	 special	 attention	 to	 the	 row	 showing	 statistics	 for	 packets	 ranging
from	 1,280	 to	 2,559	 bytes.	 Larger	 packets	 like	 these	 typically	 indicate	 the
transfer	of	data,	whereas	smaller	packets	indicate	protocol	control	sequences.
In	 this	 case,	we	 have	 a	 large	 percentage	 of	 bigger	 packets	 (66.43	 percent).
Without	seeing	the	packets	in	the	file,	we	can	make	the	educated	guess	that
the	capture	contains	one	or	more	transfers	of	data.	This	could	be	in	the	form
of	 an	 HTTP	 download,	 an	 FTP	 upload,	 or	 any	 other	 type	 of	 network
communication	in	which	data	is	transferred	between	hosts.

Most	of	the	remaining	packets	(33.44	percent)	are	in	the	40-	to	79-byte
range.	Packets	in	this	range	are	usually	TCP	control	packets	that	don’t	carry
data.	 Let’s	 consider	 the	 typical	 size	 of	 protocol	 headers.	 The	 Ethernet
header	 is	14	bytes	 (plus	a	4-byte	CRC),	 the	IP	header	 is	a	minimum	of	20
bytes,	and	a	TCP	packet	with	no	data	or	options	is	also	20	bytes.	This	means
that	 standard	 TCP	 control	 packets—such	 as	 SYN,	 ACK,	 RST,	 and	 FIN
packets—will	 be	 around	 54	 bytes	 and	 fall	 in	 this	 range.	 Of	 course,	 the
addition	of	IP	or	TCP	options	will	increase	this	size.	We’ll	dig	into	IP	and
TCP	in	Chapters	7	and	8,	respectively.

Examining	 packet	 lengths	 is	 a	 great	 way	 to	 get	 a	 bird’s-eye	 view	 of	 a
large	capture.	If	there	are	a	lot	of	large	packets,	it	may	be	safe	to	assume	that
data	is	being	transferred.	If	the	majority	of	packets	are	small,	indicating	that



not	much	data	is	being	passed,	you	may	assume	that	the	capture	consists	of
protocol	control	commands.	These	are	not	hard-and-fast	rules,	but	making
such	assumptions	is	helpful	before	diving	deeper.

Graphing
Graphs	are	the	bread	and	butter	of	analysis	and	one	of	the	best	ways	to	get	a
summary	 overview	 of	 a	 data	 set.	 Wireshark	 includes	 several	 graphing
features	to	assist	in	understanding	capture	data,	the	first	of	which	are	its	IO
graphing	capabilities.

Viewing	IO	Graphs

download-fast.pcapng,	download-slow.pcapng,	http_espn.pcapng

Wireshark’s	IO	Graph	window	allows	you	to	graph	the	throughput	of	data
on	 a	 network.	 You	 can	 use	 such	 graphs	 to	 find	 spikes	 and	 lulls	 in	 data
throughput,	discover	performance	lags	in	individual	protocols,	and	compare
simultaneous	data	streams.

To	view	an	example	of	the	IO	graph	of	a	computer	as	it	downloads	a	file
from	 the	 internet,	 open	 download-fast.pcapng.	 Click	 any	 TCP	 packet	 to
highlight	it	and	then	select	Statistics	▶	IO	Graph.

The	IO	Graph	window	shows	a	graphical	view	of	the	flow	of	data	over
time.	 In	 the	 example	 in	 Figure	 5-17,	 you	 can	 see	 that	 the	 download	 this
graph	 represents	 averages	 around	 500	 packets	 per	 second	 and	 stays
somewhat	consistent	throughout	its	duration	before	tapering	off	at	the	end.



Figure	5-17:	The	IO	graph	of	the	fast	download	is	mostly	consistent.

Let’s	 compare	 this	 to	 an	 example	 of	 a	 slower	 download.	 Leaving	 the
current	 file	 open,	 open	 download-slow.pcapng	 in	 another	 instance	 of
Wireshark.	Bring	up	the	IO	graph	of	this	download,	and	you’ll	see	a	much
different	story,	as	shown	in	Figure	5-18.



Figure	5-18:	The	IO	graph	of	the	slow	download	is	not	consistent	at	all.

This	download	has	a	transfer	rate	between	0	and	100	packets	per	second,
and	its	rate	is	far	from	consistent,	sometimes	nearing	0	packets	per	second.
You	can	see	these	inconsistencies	more	clearly	if	you	place	the	IO	graphs	of
the	 two	 files	 next	 to	 each	 other	 (see	 Figure	 5-19).	When	 comparing	 two
graphs,	 pay	 attention	 to	 the	 x-and	 y-axis	 values	 to	 ensure	 that	 you’re
comparing	apples	to	apples.	The	scale	will	automatically	adjust	based	on	the
number	 of	 packets	 and/or	 data	 transmitted,	 which	 is	 a	 key	 difference
between	the	two	graphs	in	Figure	5-19.	The	slower	download	shows	a	scale
between	0	and	100	packets	per	second,	while	the	faster	download’s	scale	has
a	range	of	0	to	700	packets	per	second.



Figure	5-19:	Viewing	multiple	IO	graphs	side	by	side	can	be	helpful	in	spotting	variance.

The	configurable	options	at	the	bottom	of	this	window	allow	you	to	use
multiple	 unique	 filters	 (using	 the	 same	 syntax	 as	 for	 a	 display	 or	 capture
filter)	and	specify	display	colors	for	those	filters.	For	instance,	you	can	create
filters	for	specific	IP	addresses	and	assign	unique	colors	to	them	to	view	the
variance	in	throughput	for	each	device.	Let’s	try	that	out.

Open	 http_espn.pcapng,	 which	was	 captured	while	 a	 device	 was	 visiting
the	ESPN	home	page.	If	you	 look	at	 the	Conversations	window,	you’ll	 see
that	 the	 top-talking	 external	 IP	 address	 is	 205.234.218.129.	 From	 this,	 we
can	 deduce	 that	 this	 host	 is	 likely	 the	 primary	 content	 provider	 we	 are
receiving	data	 from	when	visiting	 espn.com.	However,	 there	are	also	 several
other	IPs	participating	in	conversations,	likely	because	additional	content	is
being	downloaded	from	external	content	providers	and	advertisers.	We	can
show	the	disparity	between	the	direct	and	third-party	content	delivery	using
the	IO	graph	shown	in	Figure	5-20.

http://espn.com


Figure	5-20:	An	IO	graph	showing	IO	of	two	separate	devices.

The	two	filters	applied	in	this	chart	are	represented	by	the	rows	on	the
bottom	of	 the	 IO	Graph	window.	The	 filter	named	Top	Talker	 shows	 IO
only	 for	 the	 IP	 address	 205.234.218.129,	 our	 primary	 content	 provider.	 It
will	graph	this	value	in	black	using	the	stacked-bar	style.	The	second	filter,
named	 Everything	 Else,	 will	 show	 IO	 for	 everything	 in	 the	 capture	 file
except	 for	 the	 205.234.218.129	 address	 and	 thus	 includes	 all	 of	 the	 third-
party	content	providers.	This	value	will	be	graphed	in	red	(shown	here	as	the
lighter	gray)	using	the	stacked	bar.	Notice	that	we’ve	changed	the	y-axis	unit
to	 bytes	 per	 second.	With	 these	 changes	 applied,	 it’s	 very	 easy	 to	 see	 the
difference	between	primary	and	third-party	content	providers	and	 just	how
much	content	is	actually	from	a	third-party	source.	This	is	a	fun	exercise	to
repeat	 on	 your	 frequently	 visited	 websites	 and	 a	 useful	 strategy	 for
comparing	the	IO	of	different	network	hosts.



Round-Trip	Time	Graphing

download-fast.pcapng

Another	graphing	feature	of	Wireshark	is	the	ability	to	view	a	plot	of	round-
trip	 times	 for	a	given	capture	 file.	The	round-trip	 time	 (RTT)	 is	 the	 time	 it
takes	for	an	acknowledgment	to	be	received	for	a	packet.	Effectively,	this	is
the	 time	 it	 took	 your	 packet	 to	 get	 to	 its	 destination	 and	 for	 the
acknowledgment	of	that	packet	to	be	sent	back	to	you.	Analysis	of	RTTs	is
often	 done	 to	 find	 slow	 points	 or	 bottlenecks	 in	 communication	 and	 to
determine	whether	there	is	any	latency.

Let’s	 try	 out	 this	 feature.	Open	 the	 file	 download-fast.pcapng.	 View	 the
RTT	 graph	 of	 this	 file	 by	 selecting	 a	 TCP	 packet	 and	 then	 choosing
Statistics	▶	TCP	Stream	Graphs	▶	Round	Trip	Time	Graph.	The	RTT
graph	for	download-fast.pcapng	is	shown	in	Figure	5-21.

Figure	5-21:	The	RTT	graph	of	the	fast	download	appears	mostly	consistent,	with	only	a	few	stray
values.



Each	 point	 in	 the	 graph	 represents	 the	RTT	of	 a	 packet.	The	 default
view	shows	these	values	sorted	by	sequence	number.	You	can	click	a	plotted
point	within	the	graph	to	be	taken	directly	to	that	packet	in	the	Packet	List
pane.

NOTE

The	RTT	graph	is	unidirectional,	so	it’s	important	to	select	the	proper
direction	of	the	traffic	you’d	like	to	analyze.	If	your	graph	doesn’t	look	like	the
one	in	Figure	5-21,	you	might	need	to	click	the	Switch	Direction	button	twice.

It	 appears	 as	 though	 the	 RTT	 graph	 for	 the	 fast	 download	 has	 RTT
values	mostly	under	0.05	seconds,	with	a	few	slower	points	between	0.10	and
0.25	seconds.	Although	there	are	quite	a	 few	higher	values,	 the	majority	of
the	RTT	values	 are	okay,	 so	 this	would	be	 considered	 an	 acceptable	RTT
for	a	file	download.	When	examining	the	RTT	graph	for	throughput	issues,
you	 want	 to	 look	 for	 high	 latency	 times,	 which	 are	 indicated	 by	 multiple
points	plotted	at	higher	y-axis	values.

Flow	Graphing

dns_recursivequery_server.pcapng

The	flow	graph	feature	is	useful	for	visualizing	connections	and	showing	the
flow	of	data	over	 time,	 information	that	makes	 it	easier	 to	understand	how
devices	are	communicating.	A	flow	graph	contains	a	column-based	view	of	a
connection	 between	 hosts	 and	 organizes	 the	 traffic	 so	 you	 can	 interpret	 it
visually.

To	create	a	flow	graph,	open	the	file	dns_recursivequery_server.pcapng	and
select	Statistics	▶	Flow	Graph.	The	resulting	graph	is	shown	in	Figure	5-
22.



Figure	5-22:	The	TCP	flow	graph	allows	us	to	visualize	the	connection	much	better.

This	flow	graph	is	a	recursive	DNS	query,	which	is	a	DNS	query	that	is
received	by	one	host	and	forwarded	to	another	(we’ll	cover	DNS	in	Chapter
9).	Each	 vertical	 line	 in	 the	 graph	 represents	 an	 individual	 host.	The	 flow
graph	is	a	great	way	to	visualize	back-and-forth	communication	between	two
devices	or,	as	 in	this	example,	 the	relationship	between	the	communication
of	 multiple	 devices.	 It’s	 also	 useful	 for	 understanding	 the	 normal	 flow	 of
communication	with	protocols	that	you	are	less	experienced	with.

Expert	Information

download-slow.pcapng

The	dissectors	for	each	protocol	in	Wireshark	define	expert	info	that	can	be
used	 to	 alert	 you	 about	 particular	 states	 within	 packets	 of	 that	 protocol.
These	states	are	separated	into	four	categories.

Chat			Basic	information	about	the	communication
Note			Unusual	packets	that	may	be	part	of	normal	communication
Warning	 	 	 Unusual	 packets	 that	 are	 most	 likely	 not	 part	 of	 normal
communication
Error			An	error	in	a	packet	or	the	dissector	interpreting	it



For	example,	open	the	file	download-slow.pcapng.	Then	click	Analyze	and
select	 Expert	 Information	 to	 bring	 up	 the	 Expert	 Information	 window.
Once	there,	deselect	Group	by	summary	to	organize	the	output	by	severity
(see	Figure	5-23).

Figure	5-23:	The	Expert	Information	window	shows	information	from	the	expert	system
programmed	within	the	protocol	dissectors.

The	 window	 has	 sections	 for	 each	 classification	 of	 information.	 Here
there	are	no	errors,	3	warnings,	19	notes,	and	3	chats.

Most	 of	 the	messages	within	 this	 capture	 file	 are	TCP	 related,	 simply
because	the	expert	information	system	has	traditionally	been	most	used	with
that	protocol.	At	this	time,	there	are	29	expert	info	messages	configured	for



TCP,	 and	 they	 will	 be	 useful	 when	 you	 are	 troubleshooting	 capture	 files.
These	messages	will	flag	an	individual	packet	when	it	meets	certain	criteria,
as	 listed	below.	 (The	meaning	of	 these	messages	will	become	clearer	as	we
study	TCP	in	Chapter	8	and	troubleshooting	slow	networks	in	Chapter	11.)

Chat	Messages
Window	Update			Sent	by	a	receiver	to	notify	a	sender	that	the	size	of	the
TCP	receive	window	has	changed.

Note	Messages
TCP	Retransmission			Results	from	packet	loss.	Occurs	when	a	duplicate
ACK	is	received	or	the	retransmission	timer	of	a	packet	expires.

Duplicate	ACK			When	a	host	doesn’t	receive	the	next	sequence	number
it	is	expecting,	it	generates	a	duplicate	ACK	of	the	last	data	it	received.

Zero	Window	 Probe	 	 	Monitors	 the	 status	 of	 the	TCP	 receive	window
after	 a	 zero	window	 packet	 has	 been	 transmitted	 (covered	 in	Chapter
11).

Keep	Alive	ACK			Sent	in	response	to	keep-alive	packets.

Zero	 Window	 Probe	 ACK	 	 	 Sent	 in	 response	 to	 zero-window-probe
packets.

Window	 Is	 Full	 	 	Notifies	 a	 transmitting	 host	 that	 the	 receiver’s	TCP
receive	window	is	full.

Warning	Messages
Previous	Segment	Lost	 	 	 Indicates	packet	 loss.	Occurs	when	an	expected
sequence	number	in	a	data	stream	is	skipped.

ACKed	Lost	Packet			Occurs	when	an	ACK	packet	is	seen	but	the	packet
it	is	acknowledging	is	not.

Keep	Alive			Triggered	when	a	connection	keep-alive	packet	is	seen.

Zero	Window			Seen	when	the	size	of	the	TCP	receive	window	is	reached
and	 a	 zero	window	notice	 is	 sent	 out,	 requesting	 that	 the	 sender	 stop
sending	data.

Out-of-Order	 	 	 Utilizes	 sequence	 numbers	 to	 detect	 when	 packets	 are
received	out	of	sequence.



Fast	Retransmission			A	retransmission	that	occurs	within	20	milliseconds
of	a	duplicate	ACK.

Error	Messages
No	Error	Messages

Although	some	of	the	features	discussed	 in	this	chapter	may	seem	as	 if
they	 would	 be	 used	 only	 in	 obscure	 situations,	 you	 will	 probably	 find
yourself	 using	 them	more	 than	 you	might	 expect.	 It’s	 important	 that	 you
familiarize	 yourself	 with	 these	 windows	 and	 options;	 I	 will	 be	 referencing
them	a	lot	in	the	next	few	chapters.



6
PACKET	ANALYSIS	ON	THE	COMMAND	LINE

While	many	scenarios	can	be	addressed	using	a	GUI,
in	 some	 cases,	 using	 command	 line	 tools—such	 as
TShark	or	tcpdump—is	necessary	or	preferable.	Here
are	 some	 situations	 in	 which	 a	 command	 line	 tool
might	be	used	instead	of	Wireshark:
•					Wireshark	provides	a	lot	of	information	at	once.	By	using	a	command

line	tool,	you	can	limit	displayed	information	to	only	pertinent	data,
such	as	a	single	line	showing	IP	addresses.

•					Command	line	tools	are	best	suited	for	filtering	a	packet	capture	file	and
providing	the	results	directly	to	another	tool	using	Unix	pipes.

•					Dealing	with	a	very	large	capture	file	can	often	overwhelm	Wireshark
because	the	entire	file	must	be	loaded	into	RAM.	Stream	processing	of
large	capture	files	with	command	line	tools	can	allow	you	to	quickly
filter	the	file	down	to	the	relevant	packets.

•					If	you	are	dealing	with	a	server	and	don’t	have	access	to	a	graphical	tool,
you	may	be	forced	to	rely	on	command	line	tools.

In	this	chapter,	I’ll	demonstrate	the	features	of	two	common	command
line	 packet	 analysis	 tools,	 TShark	 and	 tcpdump.	 I	 think	 it’s	 helpful	 to	 be



familiar	with	 both,	 but	 I	 generally	 find	myself	 using	TShark	 on	Windows
systems	and	tcpdump	on	Unix	systems.	If	you	exclusively	use	Windows,	you
may	want	to	skip	the	parts	on	tcpdump.

Installing	TShark
Terminal-based	Wireshark,	or	TShark,	 is	a	packet	analysis	application	that
provides	a	lot	of	the	same	functionality	as	Wireshark	but	exclusively	from	a
command	 line	 interface	 with	 no	GUI.	 If	 you’ve	 installed	Wireshark,	 then
you	 likely	 have	TShark	 as	well	 unless	 you	 explicitly	 chose	 not	 to	 install	 it
during	Wireshark	 installation.	 You	 can	 verify	 that	 TShark	 is	 installed	 by
following	these	steps:

1.	 Open	a	command	prompt.	Click	the	Start	Menu,	enter	cmd,	and	click
Command	Prompt.

2.	 Browse	to	the	directory	where	Wireshark	is	installed.	If	you	installed	it
to	the	default	location,	you	can	go	there	by	entering	cd C:\Program
Files\ Wireshark	in	the	command	prompt.

3.	 Run	TShark	and	print	its	version	information	by	entering	tshark –v.	If
TShark	isn’t	installed,	you’ll	get	an	error	saying	the	command	is	not
recognized.	If	TShark	is	installed	on	your	system,	you’ll	get	an	output
with	the	TShark	version	information:

C:\Program Files\Wireshark>tshark –v
TShark (Wireshark) 2.0.0 (v2.0.0-0-g9a73b82 from master-2.0
--snip--

If	you	didn’t	install	TShark	and	would	like	to	use	it	now,	you	can	simply
rerun	the	Wireshark	installation	and	make	sure	TShark	is	selected.	(It	is	by
default.)

If	 you’d	 like	 to	 immediately	 start	 learning	 more	 about	 TShark’s
capabilities,	 you	 can	 print	 the	 available	 commands	 with	 the	 –h	 argument.
We’ll	cover	some	of	these	commands	in	this	chapter.

C:\Program Files\Wireshark>tshark -h

Like	 Wireshark,	 TShark	 can	 run	 on	 multiple	 operating	 systems,	 but



since	 it’s	 not	 dependent	 on	 OS-specific	 graphics	 libraries,	 the	 user
experience	is	more	consistent	across	different	OS	platforms.	Because	of	this,
TShark	 operates	 very	 similarly	 on	Windows,	 Linux,	 and	OS	X.	However,
there	are	still	some	differences	in	how	TShark	runs	on	each	platform.	In	this
book,	 we’ll	 focus	 on	 running	 TShark	 on	 Windows	 because	 that	 is	 the
primary	operating	system	it	was	designed	to	work	with.

Installing	tcpdump
While	Wireshark	is	the	most	popular	graphical	packet	analysis	application	in
the	world,	tcpdump	is	by	far	the	most	popular	command	line	packet	analysis
application.	Designed	to	work	on	Unix-based	operating	systems,	tcpdump	is
very	easy	 to	 install	 via	popular	package	management	 applications	 and	even
comes	preinstalled	on	many	flavors	of	Linux.

Even	though	the	majority	of	this	book	is	Windows	focused,	sections	on
tcpdump	 are	 included	 for	 Unix	 users.	 Specifically,	 we’ll	 be	 using	 Ubuntu
14.04	LTS.	 If	 you	would	 like	 to	 use	 tcpdump	on	 a	Windows	device,	 then
you	 can	 download	 and	 install	 its	Windows	 counterpart,	WinDump,	 from
http://www.winpcap.org/windump/.	While	the	experience	of	tcpdump	and	that
of	 WinDump	 aren’t	 entirely	 the	 same,	 these	 packet	 analyzers	 function
similarly.	Note,	however,	that	WinDump	isn’t	nearly	as	actively	maintained
as	tcpdump.	As	a	result,	a	few	newer	features	might	be	missing,	and	security
vulnerabilities	may	exist.	(We	won’t	be	covering	WinDump	in	this	book.)

Ubuntu	doesn’t	come	with	tcpdump	preinstalled,	but	installing	it	is	very
easy	 thanks	 to	 the	APT	package	management	 system.	To	 install	 tcpdump,
follow	these	steps:

1.	 Open	a	terminal	window	and	run	the	command	sudo apt-get update
to	ensure	that	your	package	repositories	are	up-to-date	with	the	latest
package	versions.

2.	 Run	the	command	sudo apt-get install tcpdump.

3.	 You’ll	be	asked	to	install	a	number	of	prerequisites	that	are	needed	to
run	tcpdump.	Allow	these	installations	by	typing	Y	and	pressing	ENTER
when	prompted.

4.	 Once	the	installation	has	completed,	run	the	command	tcpdump –h	to

http://www.winpcap.org/windump/


execute	tcpdump	and	print	its	version	information.	You’re	ready	to	start
using	tcpdump	if	the	command	is	successful	and	you	see	text	like	this	in
the	terminal	window:

sanders@ppa:~$ tcpdump -h
tcpdump version 4.5.1
libpcap version 1.5.3
Usage: tcpdump [-aAbdDefhHIJKlLnNOpqRStuUvxX#] [ -B size ] [ -c count ]
            [ -C file_size ] [ -E algo:secret ] [ -F file ] [ -G seconds ]
            [ -i interface ] [ -j tstamptype ] [ -M secret ]
            [ -Q metadata-filter-expression ]
            [ -r file ] [ -s snaplen ] [ -T type ] [ --version ] [ -V file ]
            [ -w file ] [ -W filecount ] [ -y datalinktype ] [ -z command ]
            [ -Z user ] [ expression ]

You	can	print	all	of	tcpdump’s	available	commands	by	invoking	the	man
tcpdump	command,	like	this:

sanders@ppa:~$ man tcpdump

We’ll	talk	about	how	to	use	several	of	these	commands.

Capturing	and	Saving	Packets
The	 first	order	of	business	 is	 to	 capture	packets	 from	 the	wire	 and	display
them	 on	 the	 screen.	 To	 start	 a	 capture	 in	 TShark,	 simply	 execute	 the
command	tshark.	This	command	will	start	the	process	of	capturing	packets
from	 a	 network	 interface	 and	 dumping	 them	 on	 screen	 in	 your	 terminal
window,	which	will	look	something	like	this:

C:\Program Files\Wireshark>tshark
  1   0.000000 172.16.16.128 -> 74.125.95.104 TCP 66 1606      80 [SYN]
Seq=0 Win=8192 Len=0 MSS=1460 WS=4 SACK_PERM=1
  2   0.030107 74.125.95.104 -> 172.16.16.128 TCP 66 80      1606 [SYN, ACK]
Seq=0 Ack=1 Win=5720 Len=0 MSS=1406 SACK_PERM=1 WS=64
  3   0.030182 172.16.16.128 -> 74.125.95.104 TCP 54 1606      80 [ACK]
Seq=1 Ack=1 Win=16872 Len=0
  4   0.030248 172.16.16.128 -> 74.125.95.104 HTTP 681 GET / HTTP/1.1
  5   0.079026 74.125.95.104 -> 172.16.16.128 TCP 60 80      1606 [ACK]
Seq=1 Ack=628 Win=6976 Len=0

To	start	a	capture	in	tcpdump,	execute	the	command	tcpdump.	After	you
run	this	command,	your	terminal	window	should	look	something	like	this:

sanders@ppa:~$ tcpdump



tcpdump: verbose output suppressed, use -v or -vv for full protocol decode
listening on eth0, link-type EN10MB (Ethernet), capture size 65535 bytes
21:18:39.618072 IP 172.16.16.128.slm-api > 74.125.95.104.http: Flags [S],
seq 2082691767, win 8192, options [mss 1460,nop,wscale 2,nop,nop,sackOK],
length 0
21:18:39.648179 IP 74.125.95.104.http > 172.16.16.128.slm-api:
Flags [S.], seq 2775577373, ack 2082691768, win 5720, options [mss
1406,nop,nop,sackOK,nop,wscale 6], length 0
21:18:39.648254 IP 172.16.16.128.slm-api > 74.125.95.104.http: Flags [.],
ack 1, win 4218, length 0
21:18:39.648320 IP 172.16.16.128.slm-api > 74.125.95.104.http: Flags [P.],
seq 1:628, ack 1, win 4218, length 627: HTTP: GET / HTTP/1.1
21:18:39.697098 IP 74.125.95.104.http > 172.16.16.128.slm-api: Flags [.],
ack 628, win 109, length 0

NOTE

Since	administrative	privileges	are	required	to	capture	packets	on	Unix
systems,	you’ll	likely	either	have	to	execute	tcpdump	as	the	root	user	or	use	the
sudo	command	in	front	of	the	commands	listed	in	this	book.	In	many	cases,
you’ll	probably	be	accessing	your	Unix-based	system	as	a	user	with	limited
privileges.	If	you	encounter	a	permissions	error	while	following	along,	this	is
probably	the	reason	why.

Depending	on	how	your	system	is	configured,	TShark	or	tcpdump	may
not	default	to	the	network	interface	you	want	to	capture	traffic	from.	If	that
happens,	you	will	need	to	specify	 it.	You	can	 list	 the	 interfaces	available	 to
TShark	 by	 using	 the	 –D	 argument,	 which	 outputs	 the	 interfaces	 as	 a
numbered	list,	as	shown	here:

C:\Program Files\Wireshark>tshark -D
1. \Device\NPF_{1DE095C2-346D-47E6-B855-11917B74603A} (Local Area Connection*
2)
2. \Device\NPF_{1A494418-97D3-42E8-8C0B-78D79A1F7545} (Ethernet 2)

To	 use	 a	 specific	 interface,	 use	 the	 –i	 argument	 with	 the	 interface’s
assigned	number	from	the	interface	list,	like	this:

C:\Program Files\Wireshark>tshark –i 1

This	command	will	capture	packets	exclusively	from	the	interface	named
Local	Area	Connection	2,	which	 is	 assigned	 the	number	1	 in	 the	 interface
list.	I	recommend	always	specifying	which	interface	you	are	capturing	from.
It’s	 common	 for	virtual	machine	 tools	or	VPNs	 to	add	 interfaces,	 and	you



want	 to	be	certain	 that	 the	packets	you	are	capturing	are	coming	 from	the
correct	source.

On	a	Linux	or	OS	X	system	running	tcpdump,	use	the	ifconfig	command
to	list	the	available	interfaces:

sanders@ppa:~$ ifconfig
eth0      Link encap:Ethernet HWaddr 00:0c:29:1f:a7:55
          inet addr:172.16.16.139 Bcast:172.16.16.255 Mask:255.255.255.0
          inet6 addr: fe80::20c:29ff:fe1f:a755/64 Scope:Link
          UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:1
          RX packets:5119 errors:0 dropped:0 overruns:0 frame:0
          TX packets:3088 errors:0 dropped:0 overruns:0 carrier:0
          collisions:0 txqueuelen:1000
          RX bytes:876746 (876.7 KB) TX bytes:538083 (538.0 KB)

Specifying	the	interface	is	also	done	by	using	the	–i	argument:

sanders@ppa:~$ tcpdump –i eth0

This	command	will	capture	packets	exclusively	from	the	eth0	interface.
Once	you	have	everything	properly	configured,	you	can	start	capturing

packets.	If	the	device	you’re	capturing	traffic	from	is	even	remotely	busy	on
the	 network,	 then	 you’ll	 probably	 notice	 that	 lines	 representing	 individual
packets	are	flying	by	rather	quickly—potentially	too	quickly	for	you	to	read.
We	can	remedy	this	by	saving	the	packets	to	a	file	and	then	reading	only	a
few	of	them	from	that	file.

To	 save	 collected	 packets	 to	 a	 file	 in	 both	 tools,	 use	 the	 –w	 argument
along	with	the	name	of	the	file.	The	capture	will	continue	running	until	you
stop	it	by	pressing	CTRL-C.	The	file	will	be	saved	to	whatever	directory	the
program	was	executed	from,	unless	otherwise	specified.

Here’s	an	example	of	this	command	in	TShark:

C:\Program Files\Wireshark>tshark –i 1 –w packets.pcap

This	 command	 will	 write	 all	 of	 the	 packets	 captured	 from	 the	 first
interface	in	the	interface	list	to	packets.pcap.

In	tcpdump,	the	same	command	would	look	like	this:

sanders@ppa:~$ tcpdump –i eth0 –w packets.pcap

To	read	packets	back	from	a	saved	file,	use	the	–r	argument	along	with



the	name	of	the	file:

C:\Program Files\Wireshark>tshark –r packets.pcap

This	 command	 will	 read	 all	 the	 packets	 from	 packets.pcap	 onto	 the
screen.

The	tcpdump	command	is	nearly	identical:

sanders@ppa:~$ tcpdump –r packets.pcap

You	may	notice	that	if	the	file	you	are	attempting	to	read	from	contains
a	lot	of	packets,	you’ll	encounter	a	situation	similar	to	the	one	just	described,
with	 the	packets	 scrolling	 across	 your	 screen	 too	 fast	 for	 you	 to	 read.	You
can	limit	the	number	of	packets	displayed	when	reading	from	a	file	by	using
the	–c	argument.

For	example,	the	following	command	will	show	only	the	first	10	packets
of	the	capture	file	in	TShark:

C:\Program Files\Wireshark>tshark –r packets.pcap –c10

In	tcpdump,	the	same	argument	can	be	used:

sanders@ppa:~$ tcpdump –r packets.pcap –c10

The	 –c	 argument	 can	 also	 be	 used	 at	 capture	 time.	 Executing	 this
command	will	capture	only	the	first	10	packets	that	are	observed.	They	can
also	be	saved	when	–c	is	combined	with	the	–w	argument.

Here’s	what	this	command	looks	like	in	TShark:

C:\Program Files\Wireshark>tshark –i 1 –w packets.pcap –c10

And	in	tcpdump:

sanders@ppa:~$ tcpdump –i eth0 –w packets.pcap –c10

Manipulating	Output
A	 benefit	 of	 using	 command	 line	 tools	 is	 that	 the	 output	 is	 usually
considered	more	carefully.	A	GUI	typically	shows	you	everything	and	it’s	up



to	you	to	find	what	you	want.	Command	line	tools	typically	only	show	the
bare	 minimum	 and	 force	 you	 to	 use	 additional	 commands	 to	 dig	 deeper.
TShark	 and	 tcpdump	 are	 no	 different.	 They	 both	 show	 a	 single	 line	 of
output	 for	 each	packet,	 requiring	 you	 to	use	 additional	 commands	 to	 view
information	such	as	protocol	details	or	individual	bytes.

In	 the	 TShark	 output,	 each	 line	 represents	 a	 single	 packet,	 and	 the
format	of	the	line	depends	on	the	protocols	used	in	that	packet.	TShark	uses
the	same	dissectors	as	Wireshark	and	analyzes	packet	data	in	the	same	way,
so	TShark	output	will	mirror	Wireshark’s	Packet	List	pane	when	the	two	are
run	side	by	side.	Because	TShark	has	dissectors	for	layer	7	protocols,	it	can
provide	 a	 lot	more	 information	 about	 packets	 containing	headers	 than	 can
tcpdump.

In	 tcpdump,	 each	 line	 also	 represents	 one	 packet,	 which	 is	 formatted
differently	 based	 on	 the	 protocol	 being	 used.	 Since	 tcpdump	 doesn’t	 use
Wireshark’s	 protocol	 dissectors,	 layer	 7	 protocol	 information	 isn’t
interpreted	by	the	tool.	This	is	one	of	tcpdump’s	biggest	limitations.	Instead,
single-line	 packets	 are	 formatted	 based	 on	 their	 transport	 layer	 protocol,
which	is	either	TCP	or	UDP	(we’ll	learn	more	about	these	in	Chapter	8).

TCP	packets	use	this	format:

[Timestamp] [Layer 3 Protocol] [Source IP].[Source Port] > [Destination IP].
[Destination Port]: [TCP Flags], [TCP Sequence Number], [TCP Acknowledgement
Number], [TCP Windows Size], [Data Length]

While	UDP	packets	use	this	format:

[Timestamp] [Layer 3 Protocol] [Source IP].[Source Port] > [Destination IP].
[Destination Port]: [Layer 4 Protocol], [Data Length]

These	basic	one-line	 summaries	 are	great	 for	quick	analysis,	but	you’ll
eventually	 need	 to	 perform	 a	 deep	 dive	 into	 a	 packet.	 In	Wireshark,	 you
would	 do	 this	 by	 clicking	 a	 packet	 in	 the	 Packet	 List	 pane,	 which	 would
display	 information	 in	 the	Packet	Details	 and	Packet	Bytes	panes.	You	can
access	the	same	information	on	the	command	line	using	a	few	options.

The	 simplest	 way	 to	 gain	 more	 information	 about	 each	 packet	 is	 to
increase	the	verbosity	of	the	output.

In	TShark,	a	capital	V	is	used	to	increase	verbosity:

C:\Program Files\Wireshark>tshark –r packets.pcap –V



This	will	provide	an	output	similar	to	Wireshark’s	Packet	Details	pane
for	packets	read	from	the	packets.pcap	capture	file.	Examples	of	a	packet	with
normal	verbosity	 (a	basic	 summary)	and	expanded	verbosity	 (more	detailed
summaries	obtained	through	the	–V	argument)	are	shown	here.

First	the	standard	output:

C:\Program Files\Wireshark>tshark -r packets.pcap -c1
  1   0.000000 172.16.16.172 -> 4.2.2.1      ICMP Echo (ping) request
id=0x0001, seq=17/4352, ttl=128

And	 now	 a	 portion	 of	 the	 more	 in-depth	 information	 produced	 with
expanded	verbosity:

C:\Program Files\Wireshark>tshark -r packets.pcap -V -c1
Frame 1: 74 bytes on wire (592 bits), 74 bytes captured (592 bits) on
interface 0
    Interface id: 0 (\Device\NPF_{C30671C1-579D-4F33-9CC0-73EFFFE85A54})
    Encapsulation type: Ethernet (1)
    Arrival Time: Dec 21, 2015 12:52:43.116551000 Eastern Standard Time
    [Time shift for this packet: 0.000000000 seconds]
--snip--

In	 tcpdump,	 the	 lowercase	 v	 is	 used	 to	 increase	 verbosity.	 Unlike
TShark,	tcpdump	allows	multiple	levels	of	verbosity	to	be	displayed	for	each
packet.	You	can	add	up	to	three	levels	of	verbosity	by	appending	additional
vs,	as	seen	here:

sanders@ppa:~$ tcpdump –r packets.pcap –vvv

An	example	of	the	same	packet	displayed	with	normal	verbosity	and	one
level	 of	 expanded	 verbosity	 is	 shown	 below.	 Even	 with	 full	 verbosity,	 this
output	isn’t	nearly	as	verbose	as	what	TShark	produces.

sanders@ppa:~$ tcpdump -r packets.pcap -c1
reading from file packets.pcap, link-type EN10MB (Ethernet)
13:26:25.265937 IP 172.16.16.139 > a.resolvers.level3.net: ICMP echo request,
id 1759, seq 150, length 64
sanders@ppa:~$ tcpdump -r packets.pcap -c1 -v
reading from file packets.pcap, link-type EN10MB (Ethernet)
13:26:25.265937 IP (tos 0x0, ttl 64, id 37322, offset 0, flags [DF], proto
ICMP (1), length 84)
    172.16.16.139 > a.resolvers.level3.net: ICMP echo request, id 1759, seq
150, length 64

The	 levels	 of	 verbosity	 available	 will	 depend	 on	 the	 protocol	 of	 the



packet	you’re	examining.	While	expanded	verbosity	is	useful,	it	still	doesn’t
show	 us	 everything	 there	 is	 to	 see.	 TShark	 and	 tcpdump	 store	 the	 entire
contents	of	each	packet,	which	can	also	be	viewed	in	hexadecimal	or	ASCII
form.

In	TShark,	you	can	view	the	hex	and	ASCII	representation	of	packets	by
using	the	–x	argument,	which	can	be	combined	with	the	r	argument	to	read
and	display	a	packet	from	file:

C:\Program Files\Wireshark>tshark –xr packets.pcap

This	view,	which	is	similar	to	Wireshark’s	Packet	Bytes	pane,	is	shown
in	Figure	6-1.

Figure	6-1:	Viewing	raw	packets	in	hex	and	ASCII	in	TShark

In	 tcpdump,	 you	 can	 view	 the	 hex	 and	ASCII	 representation	 by	 using
the	–X	 switch.	You	can	also	combine	–X	with	the	r	argument	to	read	from	a
packet	file,	like	this:

sanders@ppa:~$ tcpdump –Xr packets.pcap

The	output	from	this	command	is	shown	in	Figure	6-2.

Figure	6-2:	Viewing	raw	packets	in	hex	and	ASCII	in	tcpdump

tcpdump	also	 lets	you	get	a	bit	more	granular	 if	you	need	 to.	You	can
view	only	the	hexadecimal	output	using	the	–x	(lowercase)	argument	or	only
the	ASCII	output	using	the	–A	argument.



It’s	 easy	 to	 become	 overwhelmed	 with	 data	 when	 you	 start
experimenting	with	these	data	output	options.	I	find	it	most	efficient	to	use
the	 least	 amount	 of	 information	 needed	 when	 doing	 analysis	 from	 the
command	 line.	 Start	 by	 viewing	 packets	 in	 their	 default	 list	 view	 and	 use
more	 verbose	 output	 when	 you	 narrow	 your	 analysis	 down	 to	 a	 few
interesting	 packets.	This	 approach	will	 keep	 you	 from	being	 overwhelmed
with	data.

Name	Resolution
Like	 Wireshark,	 TShark	 and	 tcpdump	 will	 attempt	 to	 perform	 name
resolution	to	convert	addresses	and	port	numbers	to	names.	If	you	followed
along	with	any	of	the	earlier	examples,	you	may	have	noticed	that	this	occurs
by	 default.	 As	 mentioned	 previously,	 I	 typically	 prefer	 to	 disable	 this
functionality	 to	 prevent	 the	 possibility	 of	 my	 analysis	 generating	 more
packets	on	the	wire.

You	 can	disable	name	 resolution	 in	TShark	by	using	 the	 –n	 argument.
This	argument,	like	many	others,	can	be	combined	with	other	commands	to
enhance	readability:

C:\Program Files\Wireshark>tshark –ni 1

You	can	enable	or	disable	certain	aspects	of	name	resolution	with	the	–N
argument.	 If	 you	use	 the	 –N	 argument,	 all	name	 resolution	will	 be	disabled
except	 for	 any	 you	 explicitly	 enable	 using	 the	 appropriate	 values.	 For
instance,	 the	 following	 command	 will	 enable	 only	 transport	 layer	 (port
name)	resolution:

C:\Program Files\Wireshark>tshark –i 1 –Nt

You	can	combine	multiple	values.	This	command	will	enable	transport
layer	and	MAC	resolution:

C:\Program Files\Wireshark>tshark –i 1 -Ntm

The	following	values	are	available	when	using	this	option:
m		MAC	address	resolution
n		Network	address	resolution



t		Transport	layer	(port	name)	resolution
N		Use	external	resolvers
C		Concurrent	DNS	lookups
In	tcpdump,	using	–n	will	disable	IP	name	resolution,	and	using	–nn	will

disable	port	name	resolution	as	well.
This	argument	can	also	be	combined	with	other	commands,	like	this:

sanders@ppa:~$ tcpdump –nni eth1

The	following	examples	show	a	packet	capture	first	with	port	resolution
enabled	and	then	with	it	disabled	(-n).

sanders@ppa:~$ tcpdump -r tcp_ports.pcap -c1
reading from file tcp_ports.pcap, link-type EN10MB (Ethernet)

14:38:34.341715 IP 172.16.16.128.2826 > 212.58.226.142. ➊http: Flags [S], seq
3691127924, win 8192, options [mss 1460,nop,wscale 2,nop,nop,sackOK], length 0
sanders@ppa:~$ tcpdump -nr tcp_ports.pcap -c1
reading from file tcp_ports.pcap, link-type EN10MB (Ethernet)

14:38:34.341715 IP 172.16.16.128.2826 > 212.58.226.142. ➋80: Flags [S], seq
3691127924, win 8192, options [mss 1460,nop,wscale 2,nop,nop,sackOK], length 0

Both	of	these	commands	read	just	the	first	packet	from	the	capture	file
tcp_ports.pcap.	 With	 the	 first	 command,	 port	 name	 resolution	 is	 on	 and
resolves	port	 80	 to	http	➊,	 but	with	 the	 second	 command,	 the	port	 is	 just
displayed	by	number	➋.

Applying	Filters
Filtering	in	TShark	and	tcpdump	is	very	flexible	because	both	allow	the	use
of	BPF	capture	filters.	TShark	can	also	use	Wireshark	display	filters.	Just	as
with	Wireshark,	capture	filters	in	TShark	can	be	used	only	at	capture	time,
and	 display	 filters	 can	 be	 used	 at	 capture	 time	 or	while	 displaying	 already
captured	packets.	We’ll	start	by	looking	at	TShark	filters.

Capture	 filters	 can	 be	 applied	 using	 the	 –f	 argument,	 followed	 by	 the
BPF	 syntax	 you	wish	 to	 use	 in	 quotation	marks.	This	 command	will	 only
capture	 and	 save	packets	with	 a	destination	of	port	 80	 and	using	 the	TCP
protocol:

C:\Program Files\Wireshark>tshark –ni 1 –w packets.pcap –f "tcp port 80"



Display	 filters	 can	 be	 applied	 using	 the	 –Y	 argument,	 followed	 by	 the
Wireshark	 filter	 syntax	 you	 wish	 to	 use	 in	 quotation	 marks.	 This	 can	 be
applied	at	capture	time	like	this:

C:\Program Files\Wireshark>tshark –ni 1 –w packets.pcap –Y "tcp.dstport == 80"

Display	filters	can	be	applied	on	already	captured	packets	using	the	same
argument.	 This	 command	 will	 display	 only	 packets	 from	 packets.pcap	 that
match	the	filter:

C:\Program Files\Wireshark>tshark –r packets.pcap –Y "tcp.dstport == 80"

With	tcpdump,	you	specify	filters	inline	at	the	end	of	a	command	within
single	 quotes.	 This	 command	 will	 also	 capture	 and	 save	 only	 packets
destined	to	TCP	port	80:

sanders@ppa:~$ tcpdump –nni eth0 –w packets.pcap "tcp dst port 80"

You	 can	 specify	 a	 filter	 when	 reading	 packets	 as	 well.	 This	 command
will	display	only	packets	from	packets.pcap	that	match	the	filter:

sanders@ppa:~$ tcpdump –r packets.pcap 'tcp dst port 80'

It’s	 important	 to	 keep	 in	 mind	 that	 if	 the	 original	 capture	 file	 was
created	 without	 a	 filter,	 then	 it	 still	 contains	 other	 packets;	 you	 are	 just
limiting	what	is	shown	on	the	screen	when	reading	from	an	existing	file.

What	if	you	have	a	capture	file	that	contains	a	large	variety	of	packets,
but	you	want	to	filter	out	a	subset	of	them	and	save	that	subset	to	a	separate
file?	You	can	do	this	by	combining	the	–w	and	–r	arguments:

sanders@ppa:~$ tcpdump –r packets.pcap 'tcp dst port 80' –w http_packets.pcap

This	 command	will	 read	 the	 file	 packets.pcap,	 filter	 out	 only	 the	 traffic
destined	for	TCP	port	80	(which	is	used	for	http),	and	write	those	packets	to
a	new	 file	 called	http_packets.pcap.	This	 is	 a	 very	 common	 technique	 to	use
when	you	want	to	maintain	a	larger	source	.pcap	file	but	only	analyze	a	small
portion	of	it	at	a	time.	I	frequently	use	this	technique	to	whittle	down	very
large	capture	files	with	tcpdump	so	that	I	can	analyze	a	subset	of	the	packets
in	Wireshark.	Smaller	capture	files	are	much	easier	to	wrangle.



In	addition	to	specifying	a	filter	inline,	tcpdump	allows	you	to	reference
a	 BPF	 file	 containing	 a	 series	 of	 filters.	This	 is	 handy	when	 you’d	 like	 to
apply	an	extremely	large	or	complex	filter	that	might	otherwise	be	unwieldy
to	edit	and	maintain	 inline	with	 the	 tcpdump	command.	You	can	specify	a
filter	file	using	the	–F	argument,	like	this:

sanders@ppa:~$ tcpdump –nni eth0 –F dns_servers.bpf

If	 your	 file	 gets	 too	 large,	 you	 might	 be	 tempted	 to	 add	 notes	 or
comments	 to	 it	 to	keep	 track	of	what	 each	part	of	 the	 filter	does.	Keep	 in
mind	that	a	BPF	filter	file	does	not	allow	for	comments	and	will	generate	an
error	 if	 anything	 other	 than	 a	 filtering	 statement	 is	 encountered.	 Since
comments	 are	 very	 helpful	 for	 deciphering	 large	 filter	 files,	 I	 usually
maintain	 two	 copies	 of	 every	 file:	 one	 for	 use	 with	 tcpdump	 that	 doesn’t
contain	comments	and	one	that	contains	comments	for	reference.

Time	Display	Formats	in	TShark
One	thing	that	often	confuses	new	analysts	is	the	default	timestamp	used	by
TShark.	 It	 shows	 packet	 timestamps	 in	 relation	 to	 the	 start	 of	 the	 packet
capture.	There	are	times	when	such	timestamping	is	preferable,	but	in	many
cases	you	may	want	to	see	the	time	the	packet	was	captured,	as	is	the	default
for	 tcpdump	 timestamps.	 You	 can	 get	 this	 same	 output	 from	 TShark	 by
using	the	–t	argument	with	the	value	ad	for	absolute	date:

C:\Program Files\Wireshark>tshark –r packets.pcap –t ad

Here’s	 a	 comparison	 of	 the	 same	 packets	 as	 before	 with	 the	 default
relative	timestamps	➊	and	absolute	timestamps	➋:

➊ C:\Program Files\Wireshark>tshark -r packets.pcap -c2
    1   0.000000 172.16.16.172 -> 4.2.2.1      ICMP Echo (ping)
  request  id=0x0001, seq=17/4352, ttl=128
    2   0.024500 4.2.2.1 -> 172.16.16.172      ICMP Echo (ping)
  reply    id=0x0001, seq=17/4352, ttl=54 (request in 1)

➋ C:\Program Files\Wireshark>tshark -r packets.pcap -t ad -c2
    1 2015-12-21 12:52:43.116551 172.16.16.172 -> 4.2.2.1      ICMP Echo (ping)
  request  id=0x0001, seq=17/4352, ttl=128
    2 2015-12-21 12:52:43.141051      4.2.2.1 -> 172.16.16.172 ICMP Echo (ping)
  reply    id=0x0001, seq=17/4352, ttl=54 (request in 1)



By	using	the	–t	argument,	you	can	specify	any	time	display	format	you
would	find	in	Wireshark.	These	formats	are	shown	in	Table	6-1.

Table	6-1:	Time	Display	Formats	Available	in	TShark

Value Timestamp Example

a Absolute	time	the	packet	was	captured	(in	your
time	zone)

15:47:58.004669

ad Absolute	time	the	packet	was	captured	with	date
(in	your	time	zone)

2015-10-09
15:47:58.004669

d Delta	(time	difference)	since	previous	captured
packet

0.000140

dd Delta	since	previous	displayed	packet 0.000140

e Epoch	time	(seconds	since	January	1,	1970,	UTC) 1444420078.004669

r Elapsed	time	between	the	first	packet	and	the
current	packet

0.000140

u Absolute	time	the	packet	was	captured	(UTC) 19:47:58.004669

ud Absolute	time	the	packet	was	captured	with	date
(UTC)

2015-10-09
19:47:58.004669

Unfortunately,	 tcpdump	 doesn’t	 provide	 this	 level	 of	 control	 for
manipulating	how	timestamps	are	shown.

Summary	Statistics	in	TShark
Another	useful	TShark	feature	(and	one	that	sets	 it	apart	from	tcpdump)	is
its	ability	to	generate	a	subset	of	statistics	from	a	capture	file.	These	statistics
mirror	 many	 of	 the	 capabilities	 found	 in	 Wireshark	 but	 provide	 easy
command	line	access.	Statistics	are	generated	by	using	the	–z	argument	and
specifying	the	name	of	the	output	you	would	like	to	generate.	You	can	view	a
full	listing	of	available	statistics	by	using	this	command:

C:\Program Files\Wireshark>tshark –z help

Many	 of	 the	 features	 we’ve	 already	 covered	 are	 available	 using	 the	 –z



argument.	 They	 include	 the	 ability	 to	 output	 endpoint	 and	 conversation
statistics	using	this	command:

C:\Program Files\Wireshark>tshark -r packets.pcap –z conv,ip

This	command	prints	a	table	of	statistics	with	information	about	the	IP
conversations	in	the	file	packets.pcap,	as	shown	in	Figure	6-3.

You	can	also	use	this	argument	to	view	protocol-specific	information.	As
shown	in	Figure	6-4,	you	can	use	the	http,tree	option	to	see	a	breakdown	of
HTTP	requests	and	responses	in	table	form.

C:\Program Files\Wireshark>tshark -r packets.pcap –z http,tree

Figure	6-3:	Using	TShark	to	view	conversation	statistics



Figure	6-4:	Using	TShark	to	view	HTTP	request	and	response	statistics

Another	useful	feature	is	the	ability	to	view	reassembled	stream	output,
similar	 to	 what	 we	 did	 earlier	 by	 right-clicking	 packets	 in	Wireshark	 and
choosing	the	Follow	TCP	Stream	option.	To	get	this	output,	we	have	to	use
the	follow	option	and	specify	the	type	of	stream,	the	output	mode,	and	which
stream	 we	 want	 to	 display.	 You	 can	 identify	 a	 stream	 with	 the	 number
assigned	to	it	in	the	leftmost	column	when	outputting	conversation	statistics
(as	seen	in	Figure	6-3).	A	command	might	look	like	this:

C:\Program Files\Wireshark>tshark -r http_google.pcap -z follow,tcp,ascii,0

This	command	will	print	TCP	stream	0	to	the	screen	in	ASCII	format
from	the	file	http_google.pcap.	The	output	for	this	command	looks	like	this:

C:\Program Files\Wireshark>tshark -r http_google.pcap -z

--snip--
===================================================================
Follow: tcp,ascii
Filter: tcp.stream eq 0
Node 0: 172.16.16.128:1606
Node 1: 74.125.95.104:80
627
GET / HTTP/1.1
Host: www.google.com
User-Agent: Mozilla/5.0 (Windows; U; Windows NT 6.1; en-US; rv:1.9.1.7)
Gecko/20091221 Firefox/3.5.7
Accept: text/html,application/xhtml+xml,application/xml;q=0.9,*/*;q=0.8
Accept-Language: en-us,en;q=0.5
Accept-Encoding: gzip,deflate
Accept-Charset: ISO-8859-1,utf-8;q=0.7,*;q=0.7
Keep-Alive: 300



Connection: keep-alive
Cookie: PREF=ID=257913a938e6c248:U=267c896b5f39fb0b:FF=4:LD=e
n:NR=10:TM=1260730654:LM=1265479336:GM=1:S=h1UBGonTuWU3D23L;
NID=31=Z-nhwMjUP63e0tYMTp-3T1igMSPnNS1eM1kN1_DUrnO2zW1cPM4JE3AJec9b_
vG-YFibFXszOApfbhBA1BOX4dKx4L8ZDdeiKwqekgP5_kzELtC2mUHx7RHx3PIttcuZ

        1406
HTTP/1.1 200 OK
Date: Tue, 09 Feb 2010 01:18:37 GMT
Expires: -1
Cache-Control: private, max-age=0
Content-Type: text/html; charset=UTF-8
Content-Encoding: gzip
Server: gws
Content-Length: 4633
X-XSS-Protection: 0

You	can	also	 specify	which	 stream	you’d	 like	 to	view	by	providing	 the
address	 details.	 For	 example,	 the	 following	 command	will	 retrieve	 a	UDP
stream	for	the	specified	endpoints	and	ports:

C:\Program Files\Wireshark>tshark –r packets.pcap –z follow,udp,ascii,192.168.

1.5:23429➊,4.2.2.1:53➋

This	command	will	print	the	UDP	stream	for	the	endpoints	192.168.1.5
on	port	23429	➊	and	4.2.2.1	on	port	53	➋	from	packets.pcap.

Here	are	some	of	my	favorite	statistical	options:

ip_hosts,tree			Displays	every	IP	address	in	a	capture,	along	with	the
rate	and	percentage	of	traffic	each	address	is	responsible	for
io,phs	 	 	 Displays	 a	 protocol	 hierarchy	 showing	 all	 protocols	 found
within	the	capture	file
http,tree			Displays	statistics	related	to	HTTP	requests	and	responses
http_req,tree			Displays	statistics	for	every	HTTP	request
smb,srt	 	 	 Displays	 statistics	 related	 to	 SMB	 commands	 for	 analyzing
Windows	communication
endpoints,wlan			Displays	wireless	endpoints
expert			Displays	expert	information	(chats,	errors,	and	so	on)	from	the
capture

There	 are	 a	 lot	 of	 useful	 options	 available	 using	 the	 –z	 argument.	 It
would	take	far	too	many	pages	to	cover	them	all	here,	but	if	you	plan	to	use
TShark	 frequently,	 you	 should	 invest	 time	 in	 reviewing	 the	 official



documentation	to	learn	more	about	everything	that	is	available.	You	can	find
that	 documentation	 here:	 https://www.wireshark.org/docs/man-
pages/tshark.html.

Comparing	TShark	and	tcpdump
Both	 command	 line	 packet	 analysis	 applications	 we’ve	 examined	 in	 this
chapter	are	well	suited	to	their	respective	tasks,	and	either	of	them	will	allow
you	 to	 accomplish	whatever	 task	 is	 at	 hand	with	 varying	degrees	 of	 effort.
There	are	a	 few	differences	worth	highlighting	so	you	can	choose	 the	best
tool	for	the	job:

Operating	system			tcpdump	is	only	available	for	Unix-based	operating
systems,	 while	 TShark	 can	 function	 on	 Windows	 and	 Unix-based
systems.
Protocol	support			Both	tools	support	common	layer	3	and	4	protocols,
but	 tcpdump	 has	 limited	 layer	 7	 protocol	 support.	TShark	 provides	 a
rich	 level	 of	 layer	 7	 protocol	 support	 because	 it	 has	 access	 to
Wireshark’s	protocol	dissectors.
Analysis	 features	 	 	 Both	 tools	 rely	 heavily	 on	 human	 analysis	 to
produce	 meaningful	 results,	 but	 TShark	 also	 provides	 a	 robust	 set	 of
analytical	and	statistical	features,	similar	to	those	in	Wireshark,	that	can
aid	analysis	when	a	GUI	isn’t	available.

Tool	 availability	 and	 personal	 preference	 are	 usually	 the	 ultimate
deciders	 of	 which	 application	 to	 use.	 Fortunately,	 the	 tools	 are	 similar
enough	 that	 learning	 one	 will	 inherently	 teach	 you	 something	 about	 the
other,	making	you	more	versatile	and	increasing	the	size	of	your	tool	kit.

https://www.wireshark.org/docs/man-pages/tshark.html


7
NETWORK	LAYER	PROTOCOLS

Whether	 you’re	 troubleshooting	 latency	 issues,
identifying	malfunctioning	 applications,	 or	 zeroing	 in
on	 security	 threats	 in	 order	 to	 spot	 abnormal	 traffic,
you	must	 first	 understand	 normal	 traffic.	 In	 the	 next
couple	 of	 chapters,	 you’ll	 learn	 how	 normal	 network
traffic	works	at	the	packet	level	as	we	journey	from	the	bottom	of	the
OSI	model	 all	 the	 way	 to	 the	 top.	 Each	 protocol	 section	 has	 at	 least	 one
associated	capture	file,	which	you	can	download	and	work	with	directly.

In	 this	 chapter,	 we’ll	 specifically	 focus	 on	 the	 network	 layer	 protocols
that	 are	 the	 workhorses	 of	 network	 communication:	 ARP,	 IPv4,	 IPv6,
ICMP,	and	ICMPv6.

The	 next	 three	 chapters	 on	 network	 protocols	 are	 arguably	 the	 most
important	 chapters	 in	 this	 book.	 Skipping	 this	 discussion	 would	 be	 like
making	 Thanksgiving	 dinner	 without	 preheating	 the	 oven.	 Even	 if	 you
already	 have	 a	 good	 grasp	 of	 how	 each	 protocol	 functions,	 give	 these
chapters	at	least	a	quick	read	in	order	to	review	the	packet	structure	of	each.

Address	Resolution	Protocol	(ARP)



Both	 logical	 and	 physical	 addresses	 are	 used	 for	 communication	 on	 a
network.	 Logical	 addresses	 allow	 for	 communication	 among	 multiple
networks	 and	 indirectly	 connected	 devices.	 Physical	 addresses	 facilitate
communication	 on	 a	 single	 network	 segment	 for	 devices	 that	 are	 directly
connected	 to	 each	 other	 with	 a	 switch.	 In	 most	 cases,	 these	 two	 types	 of
addressing	must	work	together	in	order	for	communication	to	occur.

Consider	a	scenario	in	which	you	wish	to	communicate	with	a	device	on
your	 network.	 This	 device	 may	 be	 a	 server	 of	 some	 sort	 or	 just	 another
workstation	you	need	 to	 share	 files	with.	The	 application	you	 are	using	 to
initiate	the	communication	is	already	aware	of	the	remote	host’s	IP	address
(via	 DNS,	 covered	 in	 Chapter	 9),	 meaning	 the	 system	 should	 have	 all	 it
needs	 to	build	 the	 layer	3	 through	7	 information	of	 the	packet	 it	wants	 to
transmit.	The	only	piece	of	information	it	needs	at	this	point	is	the	layer	2
data	link	information	containing	the	MAC	address	of	the	target	host.

MAC	addresses	are	needed	because	a	 switch	 that	 interconnects	devices
on	a	network	uses	a	Content	Addressable	Memory	(CAM)	table,	which	lists	the
MAC	 addresses	 of	 all	 devices	 plugged	 into	 each	 of	 its	 ports.	 When	 the
switch	 receives	 traffic	 destined	 for	 a	 particular	 MAC	 address,	 it	 uses	 this
table	to	know	which	port	to	send	the	traffic	through.	If	the	destination	MAC
address	is	unknown,	the	transmitting	device	will	first	check	for	the	address	in
its	 cache;	 if	 the	 address	 isn’t	 there,	 then	 it	 must	 be	 resolved	 through
additional	communication	on	the	network.

The	 resolution	 process	 that	 TCP/IP	 networking	 (with	 IPv4)	 uses	 to
resolve	 an	 IP	 address	 to	 a	 MAC	 address	 is	 called	 the	 Address	 Resolution
Protocol	 (ARP),	which	 is	 defined	 in	RFC	826.	The	ARP	 resolution	 process
uses	only	two	packets:	an	ARP	request	and	an	ARP	response	(see	Figure	7-
1).

NOTE

An	RFC,	or	Request	for	Comments,	is	a	technical	publication	from	the
Internet	Engineering	Task	Force	(IETF)	and	Internet	Society	(ISOC)	and	is
the	mechanism	used	to	define	the	implementation	standards	for	protocols.	You
can	search	for	RFC	documentation	at	the	RFC	Editor	home	page,
http://www.rfc-editor.org/.

The	transmitting	computer	sends	out	an	ARP	request	that	basically	says,



“Howdy,	everybody.	My	IP	address	is	192.168.0.101,	and	my	MAC	address
is	 f2:f2:f2:f2:f2:f2.	 I	need	 to	send	something	 to	whoever	has	 the	IP	address
192.168.0.1,	but	I	don’t	know	the	hardware	address.	Will	whoever	has	 this
IP	address	please	respond	with	your	MAC	address?”

This	packet	 is	broadcast	 to	every	device	on	 the	network	 segment.	Any
device	 that	 doesn’t	 have	 this	 IP	 address	 simply	 discards	 the	 packet.	 The
device	that	does	have	the	address	sends	an	ARP	reply	with	an	answer	such	as
“Hey,	 transmitting	 device,	 I’m	 the	 one	 you’re	 looking	 for	 with	 the	 IP
address	192.168.0.1.	My	MAC	address	is	02:f2:02:f2:02:f2.”

Once	 this	 resolution	 process	 is	 completed,	 the	 transmitting	 device
updates	 its	 cache	with	 the	MAC-to-IP	 address	 association	of	 the	 receiving
device	and	can	begin	sending	data.



Figure	7-1:	The	ARP	resolution	process

NOTE

You	can	view	the	ARP	table	of	a	Windows	host	by	typing	arp –a	from	a
command	prompt.

Seeing	this	process	in	action	will	help	you	understand	how	it	works.	But
before	we	look	at	some	examples,	let’s	examine	the	ARP	packet	header.

ARP	Packet	Structure

As	shown	in	Figure	7-2,	the	ARP	header	includes	the	following	fields:

Hardware	 Type	 	 	 The	 layer	 2	 type	 used—in	 most	 cases,	 this	 is
Ethernet	(type	1)
Protocol	Type			The	higher-layer	protocol	for	which	the	ARP	request
is	being	used
Hardware	 Address	 Length	 	 	 The	 length	 (in	 octets/bytes)	 of	 the
hardware	address	in	use	(6	for	Ethernet)
Protocol	Address	Length			The	length	(in	octets/bytes)	of	the	logical
address	of	the	specified	protocol	type
Operation			The	function	of	the	ARP	packet:	either	1	for	a	request	or	2
for	a	reply

Figure	7-2:	The	ARP	packet	structure



Sender	Hardware	Address			The	hardware	address	of	the	sender
Sender	Protocol	Address			The	sender’s	upper-layer	protocol	address
Target	Hardware	Address			The	intended	receiver’s	hardware	address
(all	zeroes	in	ARP	requests)
Target	 Protocol	 Address	 	 	 The	 intended	 receiver’s	 upper-layer
protocol	address

arp_resolution.pcapng

Now	open	the	file	arp_resolution.pcapng	to	see	this	resolution	process	in
action.	 We’ll	 focus	 on	 each	 packet	 individually	 as	 we	 walk	 through	 this
process.

Packet	1:	ARP	Request

The	first	packet	is	the	ARP	request,	as	shown	in	Figure	7-3.	We	can	confirm
that	this	packet	is	a	true	broadcast	packet	by	examining	the	Ethernet	header
in	 Wireshark’s	 Packet	 Details	 pane.	 The	 packet’s	 destination	 address	 is
ff:ff:ff:ff:ff:ff	➊.	This	is	the	Ethernet	broadcast	address,	and	anything	sent	to
it	 will	 be	 broadcast	 to	 all	 devices	 on	 the	 current	 network	 segment.	 The
source	 address	 of	 this	 packet	 in	 the	Ethernet	 header	 is	 listed	 as	 our	MAC
address	➋.

Given	this	structure,	we	can	discern	that	this	is	indeed	an	ARP	request
on	an	Ethernet	network	using	IPv4.	The	sender’s	IP	address	(192.168.0.114)
and	MAC	address	(00:16:ce:6e:8b:24)	are	listed	➌,	as	is	the	IP	address	of	the
target	(192.168.0.1)	➎.	The	MAC	address	of	the	target—the	information	we
are	 trying	 to	 get—is	 unknown,	 so	 the	 target	 MAC	 is	 listed	 as
00:00:00:00:00:00	➍.



Figure	7-3:	An	ARP	request	packet

Packet	2:	ARP	Response

In	 the	response	 to	 the	 initial	 request	 (see	Figure	7-4),	 the	Ethernet	header
now	 has	 a	 destination	 address	 of	 the	 source	 MAC	 address	 from	 the	 first
packet.	The	ARP	header	looks	similar	to	that	of	the	ARP	request,	with	a	few
changes:

•					The	packet’s	operation	code	(opcode)	is	now	0x0002	➊,	indicating	a
reply	rather	than	a	request.

•					The	addressing	information	is	reversed—the	sender	MAC	address	and
IP	address	are	now	the	target	MAC	address	and	IP	address	➌.

•					Most	important,	all	the	information	is	present,	meaning	we	now	have
the	MAC	address	(00:13:46:0b:22:ba)	➋	of	our	host	at	192.168.0.1.



Figure	7-4:	An	ARP	reply	packet

Gratuitous	ARP

arp_gratuitous.pcapng

Where	 I	 come	 from,	 when	 something	 is	 done	 “gratuitously,”	 the	 word
usually	carries	a	negative	connotation.	A	gratuitous	ARP,	however,	is	a	good
thing.

In	many	cases,	a	device’s	IP	address	can	change.	When	this	happens,	the
IP-to-MAC	address	mappings	that	hosts	on	the	network	have	in	their	caches
will	 be	 invalid.	 To	 prevent	 this	 from	 causing	 communication	 errors,	 a
gratuitous	ARP	packet	is	transmitted	on	the	network	to	force	any	device	that
receives	it	to	update	its	cache	with	the	new	IP-to-MAC	address	mapping	(see
Figure	7-5).



Figure	7-5:	The	gratuitous	ARP	process

A	few	different	scenarios	can	spawn	a	gratuitous	ARP	packet.	One	of	the
most	 common	 is	 the	 changing	 of	 an	 IP	 address.	 Open	 the	 capture	 file
arp_gratuitous.pcapng,	 and	you’ll	 see	 this	 in	action.	This	 file	contains	only	a
single	packet	(see	Figure	7-6)	because	that’s	all	that’s	involved	in	gratuitous
ARP.

Figure	7-6:	A	gratuitous	ARP	packet

Examining	the	Ethernet	header,	you	can	see	that	this	packet	is	sent	as	a



broadcast	 so	 that	 all	 hosts	 on	 the	 network	 receive	 it	➊.	 The	 ARP	 header
looks	like	an	ARP	request,	except	that	the	sender	IP	address	➋	and	the	target
IP	address	➌	 are	 the	 same.	When	received	by	other	hosts	on	 the	network,
this	packet	will	cause	them	to	update	their	ARP	tables	with	the	new	IP-to-
MAC	address	association.	Because	this	ARP	packet	is	unsolicited	but	results
in	a	client	updating	its	ARP	cache,	the	packet	is	considered	gratuitous.

You’ll	notice	gratuitous	ARP	packets	in	a	few	situations.	As	mentioned,
changing	a	device’s	IP	address	will	generate	a	gratuitous	packet.	Also,	some
operating	 systems	will	 perform	 a	 gratuitous	 ARP	 on	 startup.	 Additionally,
some	systems	use	gratuitous	ARP	packets	to	support	load	balancing.

Internet	Protocol	(IP)
The	primary	purpose	of	protocols	at	layer	3	of	the	OSI	model	is	to	allow	for
communication	between	networks.	As	you	just	saw,	MAC	addresses	are	used
for	communication	on	a	single	network	at	layer	2.	In	much	the	same	fashion,
layer	3	 is	responsible	 for	addresses	used	in	 internetwork	communication.	A
few	protocols	can	do	this,	but	the	most	common	is	the	Internet	Protocol	(IP),
which	 currently	 has	 two	 versions	 in	 use—IP	 version	 4	 and	 IP	 version	 6.
We’ll	start	by	examining	IP	version	4	(IPv4),	which	is	defined	in	RFC	791.

Internet	Protocol	Version	4	(IPv4)

To	understand	the	functionality	of	IPv4,	you	need	to	know	how	traffic	flows
between	networks.	IPv4	is	the	workhorse	of	the	communication	process	and
is	 ultimately	 responsible	 for	 carrying	 data	 between	 devices,	 regardless	 of
where	the	communication	endpoints	are	located.

A	simple	network	in	which	all	devices	are	connected	via	hubs	or	switches
is	called	a	 local	area	network	(LAN).	When	you	want	to	connect	two	LANs,
you	can	do	so	with	a	router.	Complex	networks	can	consist	of	thousands	of
LANs	 connected	 through	 thousands	 of	 routers	 worldwide.	 The	 internet
itself	is	a	collection	of	millions	of	LANs	and	routers.

IPv4	Addresses

IPv4	addresses	are	32-bit	assigned	numbers	used	to	uniquely	identify	devices



connected	 to	a	network.	 It’s	 a	bit	much	 to	expect	 someone	 to	 remember	a
sequence	 of	 ones	 and	 zeros	 that	 is	 32	 characters	 long,	 so	 IP	 addresses	 are
written	in	dotted-quad	(or	dotted-decimal)	notation.

In	 dotted-quad	 notation,	 each	 of	 the	 four	 sets	 of	 ones	 and	 zeros	 that
make	up	an	IP	address	is	converted	to	base	10	and	represented	as	a	number
between	 0	 and	 255	 in	 the	 format	A.B.C.D	 (see	 Figure	 7-7).	 For	 example,
consider	the	IP	address	11000000	10101000	00000000	00000001.	This	value
is	obviously	 a	bit	much	 to	 remember	or	notate.	Fortunately,	using	dotted-
quad	notation,	we	can	represent	it	as	192.168.0.1.

Figure	7-7:	Dotted-quad	IPv4	address	notation

An	IP	address	consists	of	two	parts:	a	network	portion	and	a	host	portion.
The	network	portion	identifies	the	LAN	the	device	is	connected	to,	and	the
host	portion	identifies	the	device	itself	on	that	network.	The	determination
of	which	part	of	the	IP	address	belongs	to	the	network	or	host	portion	is	not
always	 the	 same.	 This	 information	 is	 communicated	 by	 another	 set	 of
addressing	 information	 called	 the	 network	 mask	 (netmask)	 or	 sometimes
referred	to	as	a	subnet	mask.

NOTE

In	this	book,	when	we	refer	to	an	IP	address,	we	will	always	be	referring	to	an
IPv4	address.	Later	in	this	chapter,	we	will	look	at	IP	version	6,	which	uses	a
different	set	of	rules	for	addressing.	Whenever	we	refer	to	an	IPv6	address,	it
will	be	explicitly	labeled	as	such.

The	 netmask	 identifies	 which	 part	 of	 the	 IP	 address	 belongs	 to	 the
network	portion	and	which	part	belongs	 to	 the	host	portion.	The	netmask
number	is	also	32	bits	long,	and	every	bit	that	is	set	to	a	1	identifies	the	part
of	 the	 IP	 address	 that	 is	 reserved	 for	 the	network	 portion.	The	 remaining



bits	are	set	to	0	to	identify	the	host	portion.
For	example,	consider	 the	IP	address	10.10.1.22,	represented	 in	binary

as	00001010	00001010	00000001	00010110.	To	determine	the	allocation	of
each	section	of	 the	IP	address,	we	can	apply	our	netmask.	In	this	case,	our
netmask	 is	 11111111	 11111111	 00000000	 00000000.	 This	means	 that	 the
first	half	of	the	IP	address	(10.10	or	00001010	00001010)	is	reserved	for	the
network	 portion,	 and	 the	 last	 half	 of	 the	 IP	 address	 (.1.22	 or	 00000001
00010110)	identifies	the	individual	host	on	this	network,	as	shown	in	Figure
7-8.

Figure	7-8:	The	netmask	determines	the	allocation	of	the	bits	in	an	IP	address.

As	indicated	in	Figure	7-8,	netmasks	can	also	be	written	in	dotted-quad
notation.	 For	 example,	 the	 netmask	 11111111	 11111111	 00000000
00000000	is	written	as	255.255.0.0.

IP	 addresses	 and	 netmasks	 are	 commonly	 written	 in	 Classless	 Inter-
Domain	Routing	(CIDR)	notation.	In	this	form,	an	IP	address	is	written	in	full,
followed	 by	 a	 forward	 slash	 (/)	 and	 the	 number	 of	 bits	 that	 represent	 the
network	portion	of	the	IP	address.	For	example,	an	IP	address	of	10.10.1.22
and	 a	 netmask	 of	 255.255.0.0	 would	 be	 written	 in	 CIDR	 notation	 as
10.10.1.22/16.

IPv4	Packet	Structure

The	source	and	destination	IP	addresses	are	 the	crucial	components	of	 the
IPv4	packet	header,	but	that’s	not	all	of	 the	IP	information	you’ll	 find	 in	a
packet.	The	IP	header	is	quite	complex	compared	to	the	ARP	packet	we	just
examined;	it	includes	a	lot	of	extra	functionality	that	helps	IP	do	its	job.

As	shown	in	Figure	7-9,	the	IPv4	header	has	the	following	fields:

Version			The	version	of	IP	being	used	(this	will	always	be	4	for	IPv4).
Header	Length	The	length	of	the	IP	header.
Type	of	Service			A	precedence	flag	and	type	of	service	flag,	which	are



used	by	routers	to	prioritize	traffic.
Total	Length	 	 	The	 length	of	 the	IP	header	and	the	data	 included	 in
the	packet.
Identification	 	 	 A	 unique	 identification	 number	 used	 to	 identify	 a
packet	or	sequence	of	fragmented	packets.
Flags	 	 	 Used	 to	 identify	 whether	 a	 packet	 is	 part	 of	 a	 sequence	 of
fragmented	packets.
Fragment	Offset	 	 	 If	 a	packet	 is	 a	 fragment,	 the	 value	of	 this	 field	 is
used	to	reassemble	the	packets	in	the	correct	order.
Time	to	Live			Defines	the	lifetime	of	the	packet,	measured	in	hops	or
seconds	through	routers.
Protocol	 	 	 Identifies	 the	 transport	 layer	 header	 that	 encapsulates	 the
IPv4	header.
Header	Checksum			An	error-detection	mechanism	used	to	verify	that
the	contents	of	the	IP	header	are	not	damaged	or	corrupted.
Source	IP	Address			The	IP	address	of	the	host	that	sent	the	packet.
Destination	IP	Address			The	IP	address	of	the	packet’s	destination.
Options	 	 	 Reserved	 for	 additional	 IP	 options.	 It	 includes	 options	 for
source	routing	and	timestamps.
Data			The	actual	data	being	transmitted	with	IP.

Figure	7-9:	The	IPv4	packet	structure

Time	to	Live



ip_ttl_source.pcapng	ip_ttl_dest.pcapng

The	Time	to	Live	 (TTL)	value	defines	a	period	of	 time	that	can	elapse	or	a
maximum	 number	 of	 routers	 a	 packet	 can	 traverse	 before	 the	 packet	 is
discarded	for	IPv4.	A	TTL	is	defined	when	a	packet	is	created	and	generally
is	 decremented	 by	 1	 every	 time	 the	 packet	 is	 forwarded	 by	 a	 router.	 For
example,	if	a	packet	has	a	TTL	of	2,	the	first	router	it	reaches	will	decrement
the	TTL	 to	 1	 and	 forward	 it	 to	 the	 second	 router.	 This	 router	 will	 then
decrement	the	TTL	to	zero,	and	if	the	final	destination	of	the	packet	is	not
on	that	network,	the	packet	will	be	discarded	(see	Figure	7-10).

Figure	7-10:	The	TTL	of	a	packet	decreases	every	time	it	traverses	a	router.

Why	 is	 the	TTL	 value	 important?	Typically,	we	 are	 concerned	 about
the	lifetime	of	a	packet	only	in	terms	of	the	time	that	it	takes	to	travel	from
its	source	to	its	destination.	However,	consider	a	packet	that	must	travel	to	a
host	across	the	internet	while	traversing	dozens	of	routers.	At	some	point	in
that	 packet’s	 path,	 it	 could	 encounter	 a	misconfigured	 router	 and	 lose	 the
path	to	its	final	destination.	In	such	a	case,	the	router	could	do	a	number	of
things,	one	of	which	could	result	 in	 the	packet’s	being	 forwarded	around	a
network	in	a	never-ending	loop.

An	infinite	loop	can	cause	all	sorts	of	issues,	but	it	typically	results	in	the
crash	 of	 a	 program	or	 an	 entire	 operating	 system.	Theoretically,	 the	 same
thing	 could	 occur	 with	 packets	 on	 a	 network.	 The	 packets	 would	 keep
looping	 between	 routers.	 As	 the	 number	 of	 looping	 packets	 increased,	 the
available	bandwidth	on	 the	network	would	deplete	until	 a	denial	of	 service
condition	occurred.	To	prevent	this,	TTL	was	created.

Let’s	 look	 at	 an	 example	 of	 this	 in	 Wireshark.	 The	 file



ip_ttl_source.pcapng	contains	two	ICMP	packets.	ICMP	(discussed	later	in	this
chapter)	uses	IP	to	deliver	packets,	as	we	can	see	by	expanding	the	IP	header
section	in	the	Packet	Details	pane	(see	Figure	7-11).

Figure	7-11:	The	IP	header	of	the	source	packet

You	 can	 see	 that	 the	 version	 of	 IP	 being	 used	 is	 version	 4	➊,	 the	 IP
header	length	is	20	bytes	➋,	the	total	length	of	the	header	and	payload	is	60
bytes	➌,	and	the	value	of	the	TTL	field	is	128	➍.

The	 primary	 purpose	 of	 an	 ICMP	 ping	 is	 to	 test	 communication
between	devices.	Data	is	sent	from	one	host	to	another	as	a	request,	and	the
receiving	host	should	send	that	data	back	as	a	reply.	In	this	file,	we	have	one
device	with	the	address	of	10.10.0.3	➎	sending	an	ICMP	request	to	a	device
with	the	address	192.168.0.128	➏.	This	initial	capture	file	was	created	at	the
source	host,	10.10.0.3.

Now	open	the	file	ip_ttl_dest.pcapng.	In	this	file,	the	data	was	captured	at
the	destination	host,	192.168.0.128.	Expand	the	IP	header	of	the	first	packet
in	this	capture	to	examine	its	TTL	value	(see	Figure	7-12).

You	should	immediately	notice	that	the	TTL	value	is	127	➊,	1	less	than
the	 original	 TTL	 of	 128.	Without	 even	 knowing	 the	 architecture	 of	 the
network,	we	can	conclude	 that	one	 router	 separates	 these	devices	 and	 thus



the	passage	through	that	router	reduced	the	TTL	value	by	1.

Figure	7-12:	The	IP	header	shows	us	that	the	TTL	has	been	decremented	by	1.

IP	Fragmentation

ip_frag_source.pcapng

Packet	 fragmentation	 is	 a	 feature	of	 IP	 that	permits	 reliable	delivery	of	data
across	 varying	 types	 of	 networks	 by	 splitting	 a	 data	 stream	 into	 smaller
fragments.

The	fragmentation	of	a	packet	is	based	on	the	maximum	transmission	unit
(MTU)	size	of	the	layer	2	data	link	protocol	in	use	and	the	configuration	of
the	devices	using	 this	 layer	2	protocol.	 In	most	 cases,	 the	 layer	2	data	 link
protocol	 in	 use	 is	 Ethernet.	 Ethernet	 has	 a	 default	MTU	of	 1,500,	 which
means	 that	 the	 maximum	 packet	 size	 that	 can	 be	 transmitted	 over	 an
Ethernet	network	is	1,500	bytes	(not	including	the	14-byte	Ethernet	header
itself).

NOTE

Although	there	are	standard	MTU	settings,	the	MTU	of	a	device	can	be



reconfigured	manually	in	most	cases.	An	MTU	setting	is	assigned	on	a	per-
interface	basis	and	can	be	modified	on	Windows	and	Linux	systems,	as	well	as
on	the	interfaces	of	managed	routers.

When	a	device	prepares	to	transmit	an	IP	packet,	it	determines	whether
it	must	fragment	the	packet	by	comparing	the	packet’s	data	size	to	the	MTU
of	 the	 network	 interface	 from	which	 the	 packet	will	 be	 transmitted.	 If	 the
data	 size	 is	 greater	 than	 the	 MTU,	 the	 packet	 will	 be	 fragmented.
Fragmenting	a	packet	involves	the	following	steps:

1.	 The	device	splits	the	data	into	the	number	of	packets	required	for
successful	data	transmission.

2.	 The	Total	Length	field	of	each	IP	header	is	set	to	the	segment	size	of
each	fragment.

3.	 The	More	fragments	flag	is	set	to	1	on	all	packets	in	the	data	stream,
except	for	the	last	one.

4.	 The	Fragment	offset	field	is	set	in	the	IP	header	of	the	fragments.

5.	 The	packets	are	transmitted.

The	 file	 ip_frag_source.pcapng	 was	 taken	 from	 a	 computer	 with	 the
address	 10.10.0.3,	 transmitting	 a	 ping	 request	 to	 a	 device	with	 the	 address
192.168.0.128.	Notice	that	the	Info	column	of	the	Packet	List	pane	lists	two
fragmented	IP	packets,	followed	by	the	ICMP	(ping)	request.

Begin	by	examining	the	IP	header	of	packet	1	(see	Figure	7-13).



Figure	7-13:	More	fragments	and	Fragment	offset	values	can	indicate	a	fragmented	packet.

You	 can	 see	 that	 this	 packet	 is	 part	 of	 a	 fragment	 based	 on	 the	More
fragments	and	Fragment	offset	fields.	Packets	that	are	fragments	will	either
have	a	positive	Fragment	offset	value	or	have	the	More	fragments	flag	set.	In
the	 first	 packet,	 the	 More	 fragments	 flag	 is	 set	 ➊,	 indicating	 that	 the
receiving	 device	 should	 expect	 to	 receive	 another	 packet	 in	 this	 sequence.
The	Fragment	offset	is	set	to	0	➋,	indicating	that	this	packet	is	the	first	in	a
series	of	fragments.

The	IP	header	of	the	second	packet	(see	Figure	7-14)	also	has	the	More
fragments	flag	set	➊,	but	 in	this	case,	 the	Fragment	offset	value	 is	1480	➋.
This	is	indicative	of	the	1,500-byte	MTU,	minus	20	bytes	for	the	IP	header.

The	 third	packet	 (see	Figure	7-15)	does	not	have	 the	More	 fragments
flag	 set	➋,	which	marks	 it	 as	 the	 last	 fragment	 in	 the	data	 stream,	 and	 the
Fragment	 offset	 is	 set	 to	 2960	➌,	 the	 result	 of	 1480	 +	 (1500	 –	 20).	These
fragments	can	all	be	identified	as	part	of	the	same	series	of	data	because	they
have	the	same	values	in	the	Identification	field	of	the	IP	header	➊.



Figure	7-14:	The	Fragment	offset	value	increases	based	on	the	size	of	the	packets.

Figure	7-15:	More	fragments	is	not	set,	indicating	that	this	fragment	is	the	last.



While	it	 isn’t	as	common	to	see	fragmented	packets	on	a	network	as	it
used	to	be,	understanding	why	packets	are	fragmented	is	useful	so	that	when
you	do	encounter	them,	you	can	diagnose	issues	or	spot	missing	fragments.

Internet	Protocol	Version	6	(IPv6)

When	 the	 IPv4	 specification	 was	 written,	 nobody	 had	 any	 idea	 that	 we
would	 eventually	 have	 the	number	of	 internet-connected	devices	 that	 exist
today.	The	maximum	IPv4	addressable	space	was	limited	to	just	south	of	4.3
billion	 addresses.	 The	 actual	 amount	 of	 addressable	 space	 shrinks	 even
further	when	 you	 subtract	 ranges	 reserved	 for	 special	 uses	 such	 as	 testing,
broadcast	 traffic,	 and	 RFC1918	 internal	 addresses.	 While	 several	 efforts
were	made	to	delay	the	exhaustion	of	IPv4	addresses,	ultimately	the	only	way
to	 address	 this	 limitation	 was	 to	 develop	 a	 new	 version	 of	 the	 IP
specification.

Thus,	the	IPv6	specification	was	created,	with	its	first	version	released	in
1998	 as	 RFC	 2460.	 This	 version	 provided	 several	 performance
enhancements,	 including	a	much	 larger	address	 space.	 In	 this	 section,	we’ll
look	 at	 the	 IPv6	 packet	 structure	 and	 discuss	 how	 IPv6	 communications
differ	from	those	of	its	predecessor.

IPv6	Addresses

IPv4	addresses	were	limited	to	32	bits,	a	length	that	provided	an	addressable
space	 measured	 in	 the	 billions.	 IPv6	 addresses	 are	 128	 bit,	 providing	 an
addressable	space	measured	in	undecillions	(a	trillion	trillion	trillion).	That’s
quite	an	upgrade!

Since	IPv6	addresses	are	128	bits,	they	are	unwieldy	to	manage	in	binary
form.	Most	of	the	time,	an	IPv6	address	is	written	in	eight	groups	of	2	bytes
in	hexadecimal	notation,	with	each	group	separated	by	a	colon.	For	example,
a	very	simple	IPv6	address	looks	like	this:

1111:aaaa:2222:bbbb:3333:cccc:4444:dddd

Your	first	thought	is	probably	the	same	one	many	have	who	are	used	to
remembering	 IPv4	 addresses:	 IPv6	 addresses	 are	 virtually	 impossible	 to
memorize.	That	is	an	unfortunate	trade-off	for	a	much	larger	address	space.



One	feature	of	IPv6	address	notation	that	will	help	in	some	cases	is	that
some	groups	of	zeroes	can	be	collapsed.	For	example,	consider	the	following
IPv6	address:

1111:0000:2222:0000:3333:4444:5555:6666

You	 can	 collapse	 the	 grouping	 containing	 the	 zeroes	 completely	 so	 it
isn’t	visible,	like	this:

1111::2222:0000:3333:4444:5555:6666

However,	 you	 can	 only	 collapse	 a	 single	 group	 of	 zeroes,	 so	 the
following	address	would	be	invalid:

1111::2222::3333:4444:5555:6666

Another	consideration	is	that	leading	zeroes	can	be	dropped	from	IPv6
addresses.	Consider	 this	 example	 in	which	 there	 are	 zeroes	 in	 front	 of	 the
fourth,	fifth,	and	six	groups:

1111:0000:2222:0333:0044:0005:ffff:ffff

You	could	represent	the	address	more	efficiently	like	this:

1111::2222:333:44:5:ffff:ffff

This	isn’t	quite	as	easy	to	use	as	an	IPv4	address,	but	it’s	a	lot	easier	to
deal	with	than	the	longer	notation.

An	IPv6	address	has	a	network	portion	and	a	host	portion,	often	called	a
network	prefix	 and	 interface	 identifier,	 respectively.	The	distribution	of	 these
fields	 varies	 depending	 on	 the	 classification	 of	 the	 IPv6	 communication.
IPv6	 traffic	 is	 broken	down	 into	 three	 classifications:	 unicast,	multicast,	 or
anycast.	 In	 most	 cases,	 you’ll	 probably	 be	 working	 with	 link-local	 unicast
traffic,	which	is	communication	from	one	device	to	another	inside	a	network.
The	format	of	a	link-local	unicast	IPv6	address	is	shown	in	Figure	7-16.



Figure	7-16:	The	parts	of	an	IPv6	link-local	unicast	address

Link-local	 addresses	 are	 used	 when	 communication	 is	 intended	 for
another	 device	 within	 the	 same	 network.	 A	 link-local	 address	 can	 be
identified	by	having	 its	most	 significant	10	bits	 set	 to	1111111010	and	 the
next	54	bits	 set	 to	all	zeroes.	Thus,	you	can	spot	a	 link-local	address	when
the	first	half	is	fe80:0000:0000:0000.

The	second	half	of	a	link-local	IPv6	address	is	the	interface	ID	portion,
which	 uniquely	 identifies	 a	 network	 interface	 on	 an	 endpoint	 host.	 On
Ethernet	networks,	this	can	be	based	on	the	MAC	address	of	the	interface.
However,	a	MAC	address	is	only	48	bits.	To	fill	up	the	entire	64-bit	space,
the	MAC	address	 is	cut	 in	half,	and	the	value	0xfffe	 is	added	between	each
half	 as	 padding	 to	 create	 a	unique	 identifier.	Lastly,	 the	 seventh	bit	 of	 the
first	byte	is	inverted.	That’s	a	bit	complex,	but	consider	the	interface	ID	in
Figure	7-17.	The	original	MAC	address	 for	 the	device	 represented	by	 this
ID	was	 78:31:c1:cb:b2:56.	The	bytes	 0xfffe	were	 added	 in	 the	middle,	 and
flipping	the	seventh	bit	of	the	first	byte	changed	the	8	to	an	a.

Figure	7-17:	The	interface	ID	utilizes	an	interface	MAC	address	and	padding.

IPv6	 addresses	 can	 be	 represented	 with	 CIDR	 notation	 just	 like	 IPv4
addresses.	In	this	example,	64	bits	of	addressable	space	are	represented	with
a	link-local	address:

fe80:0000:0000:0000:/64

The	composition	of	an	IPv6	address	changes	when	it	is	used	with	global
unicast	traffic	that	is	routed	over	the	public	internet	(see	Figure	7-18).	When
used	in	this	manner,	a	global	unicast	is	identified	by	having	its	first	3	bits	set
to	001,	followed	by	a	45-bit	global	routing	prefix.	The	global	routing	prefix,
which	 is	 assigned	 to	 organizations	 by	 the	 Internet	 Assigned	 Numbers
Authority	 (IANA),	 is	 used	 to	 uniquely	 identify	 an	 organization’s	 IP	 space.
The	 next	 16	 bits	 are	 the	 subnet	 ID,	 which	 can	 be	 used	 for	 hierarchical



addressing,	similar	to	the	netmask	portion	of	an	IPv4	address.	The	final	64
bits	 are	 used	 for	 the	 interface	 ID,	 just	 as	with	 link-local	 unicast	 addresses.
The	routing	prefix	and	subnet	ID	can	vary	in	size.

Figure	7-18:	The	parts	of	an	IPv6	global	unicast	address

IPv6	provides	a	lot	more	efficiency	than	IPv4	in	terms	of	routing	packets
to	their	destination	and	making	effective	use	of	address	space.	This	efficiency
is	due	to	the	larger	range	of	addresses	available	and	the	use	of	link-local	and
global	addressing	along	with	unique	host	identifiers.

NOTE

It’s	easy	for	you	to	visually	differentiate	IPv6	and	IPv4	addresses,	but	many
programs	cannot	do	so.	If	you	need	to	specify	an	IPv6	address,	some
applications,	such	as	browsers	or	command	line	utilities,	require	you	to	place
square	brackets	around	the	address,	like	this:	[1111::2222:333:44:5:ffff].	This
requirement	isn’t	always	documented	well	and	has	been	a	source	of	frustration
for	many	as	they	learn	IPv6.

IPv6	Packet	Structure

http_ip4and6.pcapng

The	structure	of	the	IPv6	header	has	grown	to	support	more	features,	but	it
was	also	designed	to	be	easier	to	parse.	Instead	of	being	variable	in	size	with
a	header	length	field	that	needs	to	be	checked	to	parse	the	header,	headers
are	 now	 a	 fixed	 40	 bytes.	 Additional	 options	 are	 provided	 via	 extension
headers.	The	benefit	 is	 that	most	 routers	only	need	 to	process	 the	40-byte
header	to	forward	the	packet	along.

As	shown	in	Figure	7-19,	the	IPv6	header	has	the	following	fields:



Version			The	version	of	IP	being	used	(this	is	always	6	for	IPv6).
Traffic	Class			Used	to	prioritize	certain	classes	of	traffic.

Figure	7-19:	The	IPv6	packet	structure

Flow	Label			Used	by	a	source	to	label	a	set	of	packets	belonging	to	the
same	 flow.	 This	 field	 is	 typically	 used	 for	 quality	 of	 service	 (QoS)
management	and	to	ensure	packets	 that	are	part	of	 the	same	flow	take
the	same	path.
Payload	Length	 	 	The	 length	of	 the	data	payload	 following	 the	 IPv6
header.
Next	Header			Identifies	the	layer	4	header	that	encapsulates	the	IPv6
header.	This	field	replaces	the	Protocol	field	in	IPv4.
Hop	 Limit	 	 	 Defines	 the	 lifetime	 of	 the	 packet,	 measured	 in	 hops
through	routers.	This	field	replaces	the	TTL	field	in	IPv4.
Source	IP	Address			The	IP	address	of	the	host	that	sent	the	packet.
Destination	IP	Address			The	IP	address	of	the	packet’s	destination.

Let’s	 compare	 an	 IPv4	 and	 an	 IPv6	 packet	 to	 examine	 a	 few	 of	 the
differences	 by	 looking	 at	http_ip4and6.pcapng.	 In	 this	 capture,	 a	web	 server
was	 configured	 to	 listen	 for	 both	 IPv4	 and	 IPv6	 connections	 on	 the	 same
physical	host.	A	single	client	configured	with	both	IPv4	and	IPv6	addresses
browsed	 to	 a	 server	 using	 each	 of	 its	 addresses	 independently	 and
downloaded	the	index.php	page	using	HTTP	via	the	curl	application	(Figure



7-20).
Upon	opening	the	capture,	you	should	readily	see	which	packets	belong

to	which	conversation	based	on	the	addresses	in	the	Source	and	Destination
columns	 in	 the	Packet	List	 area.	 Packets	 1	 through	 10	 represent	 the	 IPv4
stream	 (stream	 0),	 and	 packets	 11	 through	 20	 represent	 the	 IPv6	 stream
(stream	1).	You	can	filter	for	each	of	these	streams	from	the	Conversations
window	or	by	entering	tcp.stream == 0	or	tcp.stream == 1	 in	the	filter
bar.

Figure	7-20:	Connections	between	the	same	physical	hosts	using	different	IP	versions

We’ll	cover	HTTP,	the	protocol	responsible	 for	serving	web	pages	on
the	 internet,	 in	 depth	 in	 Chapter	 8.	 In	 this	 example,	 just	 note	 that	 the
business	of	serving	web	pages	remains	consistent	regardless	of	which	lower-
layer	 network	 protocol	 is	 used.	The	 same	 can	 be	 said	 of	TCP,	which	 also
operates	in	a	consistent	manner.	This	is	a	prime	example	of	encapsulation	in
action.	 Although	 IPv4	 and	 IPv6	 function	 differently,	 the	 protocols
functioning	at	different	layers	are	unaffected.

Figure	7-21	provides	a	side-by-side	comparison	of	two	packets	with	the
same	 function—packets	 1	 and	 11.	 Both	 packets	 are	 TCP	 SYN	 packets
designed	to	initiate	a	connection	from	the	client	to	the	server.	The	Ethernet
and	 TCP	 sections	 of	 these	 packets	 are	 nearly	 identical.	 However,	 the	 IP
sections	are	completely	different.

•					The	source	and	destination	address	formats	are	different	➏➓.



•					The	IPv4	packet	is	74	bytes	with	a	60-byte	total	length	➊,	which
includes	both	the	IPv4	header	and	payload	and	a	14-byte	Ethernet
header.	The	IPv6	packet	is	96	bytes	with	a	40-byte	IPv6	payload	➐	and	a
separate	40-byte	IPv6	header	along	with	the	14-byte	Ethernet	header.
The	IPv6	header	is	40	bytes,	double	the	IPv4	header’s	20	bytes,	to
accommodate	the	larger	address	size.

•					IPv4	identifies	the	protocol	with	the	Protocol	field	➍,	whereas	IPv6
identifies	it	with	the	Next	header	field	(which	can	also	be	used	to	specify
extension	headers)	➑.

•					IPv4	has	a	TTL	field	➌,	whereas	IPv6	accomplishes	the	same
functionality	using	the	Hop	limit	field	➒.

•					IPv4	includes	a	header	checksum	value	➎,	while	IPv6	does	not.
•					The	IPv4	packet	is	not	fragmented,	but	it	still	includes	values	for	those

options	➋.	The	IPv6	header	doesn’t	contain	this	information	because,	if
fragmentation	were	required,	it	would	be	implemented	in	an	extension
header.



Figure	7-21:	A	side-by-side	comparison	of	IPv4	(top)	and	IPv6	(bottom)	packets	performing	the
same	function

Performing	side-by-side	comparisons	of	IPv4	and	IPv6	traffic	is	a	great
way	 to	 fully	 appreciate	 the	 difference	 between	 how	 the	 two	 protocols
operate.

Neighbor	Solicitation	and	ARP

icmpv6_neighbor_solicitation.pcapng

When	we	discussed	the	different	classifications	of	traffic	earlier,	I	listed	uni-
cast,	multicast,	 and	 anycast	 but	 did	 not	 list	 broadcast	 traffic.	 IPv6	 doesn’t
support	 broadcast	 traffic	 because	 broadcast	 is	 viewed	 as	 an	 inefficient
mechanism	 for	 transmission.	 Because	 there	 is	 no	 broadcast,	 ARP	 can’t	 be
used	for	hosts	to	find	each	other	on	a	network.	So,	how	do	IPv6	devices	find
each	other?

The	answer	lies	with	a	new	feature	called	neighbor	solicitation,	a	function
of	Neighbor	Discovery	Protocol	 (NDP),	which	utilizes	 ICMPv6	(discussed



in	the	last	section	of	this	chapter)	to	do	its	legwork.	To	accomplish	this	task,
ICMPv6	uses	multicast,	 a	 type	of	 communication	 in	which	only	hosts	 that
subscribe	to	a	data	stream	will	receive	and	process	it.	Multicast	traffic	can	be
identified	quickly	because	it	has	its	own	reserved	IP	space	(ff00::/8).

Although	the	address	resolution	process	relies	on	a	different	protocol,	it
still	 uses	 a	 very	 simple	 request/response	 workflow.	 For	 example,	 let’s
consider	a	scenario	in	which	a	host	with	the	IPv6	address	2001:db8:1:2::1003
wants	 to	 communicate	 with	 another	 host	 identified	 by	 the	 address
2001:db8:1:2::1000.	 Just	 as	 with	 IPv4,	 the	 source	 device	 must	 be	 able	 to
determine	the	link-layer	(MAC)	address	of	the	host	it	wants	to	communicate
with,	since	this	is	intra-network	communication.	This	process	is	described	in
Figure	7-22.



Figure	7-22:	The	neighbor	solicitation	process	for	address	resolution

In	 this	 process,	 the	 host	 2001:db8:1:2::1003	 sends	 a	 Neighbor
Solicitation	 (ICMPv6	 type	 135)	 packet	 to	 every	 device	 on	 the	network	 via
multicast,	asking,	“What	is	the	MAC	address	for	the	device	whose	IP	address
is	2001:db8:1:2::1000?	My	MAC	address	is	00:0C:29:2f:80:31.”

The	 device	 assigned	 that	 IPv6	 address	 will	 receive	 this	 multicast
transmission	 and	 respond	 to	 the	 originating	 host	 with	 a	 Neighbor
Advertisement	 (ICMPv6	 type	 136)	 packet.	 This	 packet	 says,	 “Hi,	 my
network	 address	 is	 2001:db8:1:2::1000	 and	 my	 MAC	 address	 is
00:0c:29:1f:a7:55.”	Once	this	message	is	received,	communication	can	begin.

You	 can	 see	 this	 process	 in	 action	 in	 the	 capture	 file	 icmpv6_neighbor
_solicitation.pcapng.	This	 capture	embodies	 the	example	we’ve	 just	discussed
in	which	2001:db8:1:2::1003	wants	to	communicate	with	2001:db8:1:2::1000.
Look	 at	 the	 first	 packet	 and	 expand	 the	 ICMPv6	 portion	 in	 the	 Packet
Details	window	(Figure	7-23)	to	see	that	the	packet	is	ICMP	type	135	➋	and
was	 sent	 from	2001:db8:1:2::1003	 to	 the	multicast	 address	 ff02::1:ff00:1000
➊.	 The	 source	 host	 provided	 the	 target	 IPv6	 address	 it	 wanted	 to
communicate	with	➌,	along	with	its	own	layer	2	MAC	address	➍.



Figure	7-23:	A	neighbor	solicitation	packet

The	 response	 to	 the	 solicitation	 is	 found	 in	 the	 second	 packet	 in	 the
capture	 file.	Expanding	 the	ICMPv6	portion	of	 the	Packet	Details	window
(Figure	 7-24)	 reveals	 this	 packet	 is	 ICMP	 type	 136	 ➋,	 was	 sent	 from
2001:db8:1:2::1000	 back	 to	 2001:db8:1:2::1003	➊,	 and	 contains	 the	 MAC
address	00:0c:29:1f:a7:55	associated	with	2001:db8:1:2::1000	➌.



Figure	7-24:	A	neighbor	advertisement	packet

Upon	 completion	 of	 this	 process,	 2001:db8:1:2::1003	 and
2001:db8:1:2::1000	 begin	 communicating	 normally	 with	 ICMPv6	 echo
request	 and	 reply	 packets,	 indicating	 the	 neighbor	 solicitation	 process	 and
link-layer	address	resolution	was	successful.

IPv6	Fragmentation

ipv6_fragments.pcapng

Fragmentation	 support	 was	 built	 into	 the	 IPv4	 header	 because	 it	 ensured
packets	could	traverse	all	sorts	of	networks	at	a	time	when	network	MTUs
varied	wildly.	In	IPv6,	fragmentation	is	used	less,	so	the	options	supporting
it	are	not	included	in	the	IPv6	header.	A	device	transmitting	IPv6	packets	is
expected	 to	 perform	 a	 process	 called	 MTU	 discovery	 to	 determine	 the
maximum	 size	 of	 packets	 it	 can	 send	 before	 actually	 sending	 them.	 In	 the



event	 that	a	 router	 receives	a	packet	 that	 is	 too	 large	 for	 the	MTU	on	 the
network	 it	 is	 forwarding	 to,	 it	will	drop	 the	packet	and	return	an	 ICMPv6
Packet	Too	Big	(type	2)	message	to	the	originating	host.	Upon	receipt,	the
originating	host	will	 attempt	 to	 resend	 the	packet	with	 a	 smaller	MTU,	 if
such	 action	 is	 supported	 by	 the	 upper-layer	 protocol.	 This	 process	 will
repeat	 until	 a	 small	 enough	MTU	 is	 reached	 or	 until	 the	 payload	 can	 be
fragmented	 no	more	 (Figure	 7-25).	 A	 router	will	 never	 be	 responsible	 for
fragmenting	 packets	 on	 its	 own;	 the	 source	 device	 is	 responsible	 for
determining	an	appropriate	MTU	for	the	transmission	path	and	fragmenting
appropriately.

Figure	7-25:	IPv6	MTU	path	discovery

If	 the	 upper-layer	 protocol	 being	 used	 in	 conjunction	with	 IPv6	 can’t
limit	the	size	of	the	packet	payload,	then	fragmentation	must	still	be	used.	A
fragmentation	extension	header	can	be	added	to	the	IPv6	packet	to	support
this	scenario.	You	will	find	a	sample	capture	showing	IPv6	fragmentation	in
the	file	named	ipv6_fragments.pcapng.

Because	 the	 receiving	 device	 has	 a	 smaller	 MTU	 than	 the	 sending
device,	 there	 are	 two	 fragmented	 packets	 to	 represent	 each	 ICMPv6	 echo
request	 and	 reply	 in	 the	 capture	 file.	 The	 fragmentation	 header	 from	 the
first	packet	is	shown	in	Figure	7-26.



Figure	7-26:	An	IPv6	fragment	header	extension

The	 8-byte	 extension	 header	 contains	 all	 the	 same	 fragmentation
properties	 that	 are	 found	 in	 an	 IPv4	 packet,	 such	 as	 a	 Fragment	 offset	➋,
More	Fragments	flag	➌,	and	Identification	field	➍.	Instead	of	being	present
in	 every	 packet,	 it	 is	 only	 added	 to	 the	 end	 of	 packets	 requiring
fragmentation.	This	more	efficient	process	 still	 allows	 the	receiving	system
to	 reassemble	 the	 fragments	 appropriately.	 Additionally,	 if	 this	 extension
header	 is	 present,	 the	Next	header	 field	will	 point	 to	 the	 extension	header
rather	than	the	encapsulating	protocol	➊.

IPv6	Transitional	Protocols

IPv6	addresses	a	very	real	problem,	but	its	adoption	has	been	slow	because	of
the	 effort	 required	 to	 transition	 network	 infrastructure	 to	 it.	 To	 ease	 this
transition,	several	protocols	allow	IPv6	communication	to	be	tunneled	across
networks	 that	 support	only	IPv4	communication.	 In	 this	respect,	 tunneling
means	 that	 IPv6	 communication	 is	 encapsulated	 inside	 of	 IPv4
communications	just	as	other	protocols	may	be	encapsulated.	Encapsulation



is	usually	done	in	one	of	three	ways:

Router	to	Router			Uses	a	tunnel	to	encapsulate	IPv6	traffic	from	the
transmitting	 and	 receiving	 hosts	 on	 their	 networks	 over	 an	 IPv4
network.	This	method	allows	entire	networks	 to	communicate	 in	 IPv6
over	intermediary	IPv4	links.
Host	 to	 Router	 	 	 Uses	 encapsulation	 at	 the	 router	 level	 to	 transmit
traffic	from	an	IPv6	host	over	an	IPv4	network.	This	method	allows	an
individual	host	 to	 communicate	 in	 IPv6	 to	 an	 IPv6	network	when	 the
host	resides	on	an	IPv4-only	network.
Host	 to	Host	 	 	Uses	 a	 tunnel	 between	 two	 endpoints	 to	 encapsulate
IPv6	 traffic	 between	 IPv4-	or	 IPv6-capable	hosts.	This	method	 allows
IPv6	endpoints	to	communicate	directly	across	an	IPv4	network.

While	this	book	won’t	cover	transitional	protocols	in	depth,	it’s	helpful
to	be	aware	of	their	existence	in	case	you	ever	need	to	investigate	them	while
performing	 analysis	 at	 the	 packet	 level.	 The	 following	 are	 a	 few	 common
protocols:

6to4	 	 	Also	 known	 as	 IPv6	 over	 IPv4,	 this	 transitional	 protocol	 allows
IPv6	packets	 to	 be	 transmitted	 across	 an	 IPv4	network.	This	 protocol
supports	relays	and	routers	to	provide	router-to-router,	host-to-router,
and	host-to-host	IPv6	communication.
Teredo			This	protocol,	used	for	IPv6	unicast	communications	over	an
IPv4	 network	 using	 NAT	 (network	 address	 translation),	 works	 by
sending	 IPv6	 packets	 over	 IPv4	 encapsulated	 in	 the	 UDP	 transport
protocol.
ISATAP			This	intrasite	protocol	allows	communication	between	IPv4-
and	IPv6-only	devices	within	a	network	in	a	host-to-host	manner.

Internet	Control	Message	Protocol	(ICMP)
Internet	 Control	Message	 Protocol	 (ICMP)	 is	 the	 utility	 protocol	 of	TCP/IP,
responsible	 for	 providing	 information	 regarding	 the	 availability	 of	 devices,
services,	 or	 routes	 on	 a	 TCP/IP	 network.	 Most	 network-troubleshooting
techniques	and	tools	center	around	common	ICMP	message	types.	ICMP	is
defined	in	RFC	792.



ICMP	Packet	Structure

ICMP	 is	 part	 of	 IP,	 and	 it	 relies	 on	 IP	 to	 transmit	 its	 messages.	 ICMP
contains	a	relatively	small	header	that	changes	depending	on	its	purpose.	As
shown	in	Figure	7-27,	the	ICMP	header	contains	the	following	fields:

Type	 	 	The	 type	or	classification	of	 the	 ICMP	message,	based	on	 the
RFC	specification
Code			The	subclassification	of	the	ICMP	message,	based	on	the	RFC
specification
Checksum			Used	to	ensure	that	the	contents	of	the	ICMP	header	and
data	are	intact	upon	arrival
Variable			A	portion	that	varies	depending	on	the	Type	and	Code	fields

Figure	7-27:	The	ICMP	header

ICMP	Types	and	Messages

As	 noted,	 the	 structure	 of	 an	 ICMP	 packet	 depends	 on	 its	 purpose,	 as
defined	by	the	values	in	the	Type	and	Code	fields.

You	might	consider	the	ICMP	Type	field	the	packet’s	classification	and
the	Code	 field	 its	 subclass.	 For	 example,	 a	Type	 field	 value	 of	 3	 indicates
“destination	 unreachable.”	 While	 this	 information	 alone	 might	 not	 be
enough	to	troubleshoot	a	problem,	if	that	packet	were	also	to	specify	a	Code
field	value	of	3,	indicating	“port	unreachable,”	you	could	conclude	that	there
is	an	issue	with	the	port	with	which	you	are	attempting	to	communicate.

NOTE

For	a	full	list	of	available	ICMP	types	and	codes,	see
http://www.iana.org/assignments/icmp-parameters/.



Echo	Requests	and	Responses

icmp_echo.pcapng

ICMP’s	 biggest	 claim	 to	 fame	 is	 the	 ping	 utility.	 Ping	 is	 used	 to	 test	 for
connectivity	to	a	device.	While	ping	itself	 isn’t	a	part	of	 the	ICMP	spec,	 it
utilizes	ICMP	to	achieve	its	core	functionality.

To	 use	 ping,	 enter	 ping ipaddress	 at	 the	 command	 prompt,	 replacing
ipaddress	 with	 the	 actual	 IP	 address	 of	 a	 device	 on	 your	 network.	 If	 the
target	device	is	turned	on,	your	computer	has	a	communication	route	to	it,
and	there	is	no	firewall	blocking	that	communication,	you	should	see	replies
to	your	ping	command.

The	 example	 in	 Figure	 7-28	 shows	 four	 successful	 replies	 that	 display
their	size;	round	trip	time	(or	RTT),	which	is	the	time	it	takes	for	the	packet
to	arrive	and	a	response	to	be	received;	and	TTL	used.	The	Windows	utility
also	 provides	 a	 summary	 detailing	 how	many	 packets	 were	 sent,	 received,
and	lost.	If	communication	fails,	you	should	see	a	message	telling	you	why.

Figure	7-28:	The	ping	command	being	used	to	test	connectivity

Basically,	the	ping	command	sends	one	packet	at	a	time	to	a	device	and
listens	for	a	reply	to	determine	whether	there	is	connectivity	to	that	device,
as	shown	in	Figure	7-29.



Figure	7-29:	The	ping	command	involves	only	two	steps.

NOTE

Although	ping	has	long	been	the	bread	and	butter	of	IT,	its	results	can	be	a	bit
deceiving	when	host-based	firewalls	are	deployed.	Many	of	today’s	firewalls
limit	the	ability	of	a	device	to	respond	to	ICMP	packets.	This	is	great	for
security,	because	potential	attackers	using	ping	to	determine	whether	a	host	is
accessible	might	be	deterred,	but	troubleshooting	is	also	more	difficult—it	can
be	frustrating	to	ping	a	device	to	test	for	connectivity	and	not	receive	a	reply
when	you	know	you	can	communicate	with	that	device.

The	 ping	 utility	 in	 action	 is	 a	 great	 example	 of	 simple	 ICMP
communication.	The	packets	 in	 the	 file	 icmp_echo.pcapng	 demonstrate	what
happens	when	you	run	ping.

The	 first	 packet	 (see	 Figure	 7-30)	 shows	 that	 host	 192.168.100.138	 is
sending	a	packet	to	192.168.100.1	➊.	When	you	expand	the	ICMP	portion
of	 this	packet,	 you	can	determine	 the	 ICMP	packet	 type	by	 looking	at	 the
Type	and	Code	fields.	In	this	case,	the	packet	is	type	8	➋	and	the	code	is	0
➌,	indicating	an	echo	request.	(Wireshark	should	tell	you	what	the	displayed
type/code	 actually	 is.)	 This	 echo	 (ping)	 request	 is	 the	 first	 half	 of	 the
equation.	 It	 is	 a	 simple	 ICMP	packet,	 sent	 using	 IP,	 that	 contains	 a	 small
amount	 of	 data.	 Along	 with	 the	 type	 and	 code	 designations	 and	 the
checksum,	we	also	have	a	sequence	number	that	is	used	to	pair	requests	with
replies,	and	there	is	a	random	text	string	in	the	variable	portion	of	the	ICMP
packet.



Figure	7-30:	An	ICMP	echo	request	packet

NOTE

The	terms	echo	and	ping	are	often	used	interchangeably,	but	remember	that
ping	is	actually	the	name	of	a	tool.	The	ping	tool	is	used	to	send	ICMP	echo
request	packets.

The	 second	 packet	 in	 this	 sequence	 is	 the	 reply	 to	 our	 request	 (see
Figure	7-31).	The	 ICMP	portion	of	 the	packet	 is	 type	0	➊	 and	 code	0	➋,
indicating	 that	 this	 is	 an	 echo	 reply.	 Because	 the	 sequence	 number	 and
identifier	in	the	second	packet	match	those	of	the	first	➌,	we	know	that	this
echo	 reply	 matches	 the	 echo	 request	 in	 the	 previous	 packet.	 Wireshark
displays	 the	values	of	 these	 fields	 in	big-endian	(BE)	and	 little-endian	(LE)
format.	In	other	words,	 it	represents	 the	data	 in	a	different	order	based	on
how	 a	 particular	 endpoint	 might	 process	 the	 data.	 This	 reply	 packet	 also
contains	the	same	32-byte	string	of	data	that	was	transmitted	with	the	initial
request	➍.	Once	 this	 second	packet	has	been	 received	by	192.168.100.138,
ping	will	report	success.



Figure	7-31:	An	ICMP	echo	reply	packet

Note	 that	you	can	use	variations	of	 the	ping	command	 to	 increase	 the
size	 of	 the	 data	 padding	 in	 echo	 requests,	 which	 forces	 packets	 to	 be
fragmented	 for	 various	 types	 of	 network	 troubleshooting.	 This	 may	 be
necessary	 when	 you’re	 troubleshooting	 networks	 that	 require	 a	 smaller
fragment	size.

NOTE

The	random	text	used	in	an	ICMP	echo	request	can	be	of	great	interest	to	a
potential	attacker.	Attackers	can	use	the	information	in	this	padding	to	profile
the	operating	system	used	on	a	device.	Additionally,	attackers	can	place	small
bits	of	data	in	this	field	as	a	method	of	covert	communication.

traceroute

icmp_traceroute.pcapng

The	 traceroute	 utility	 is	 used	 to	 identify	 the	 path	 from	 one	 device	 to
another.	On	a	simple	network,	a	path	may	go	through	only	a	single	router	or
no	router	at	all.	On	a	complex	network,	however,	a	packet	may	need	to	go
through	dozens	of	routers	to	reach	its	final	destination.	Thus,	it	is	crucial	to
be	able	to	trace	the	exact	path	a	packet	takes	from	one	destination	to	another



in	order	to	troubleshoot	communication.
By	using	ICMP	(with	a	little	help	from	IP),	traceroute	can	map	the	path

packets	take.	For	example,	the	first	packet	in	the	file	icmp_traceroute.pcapng	is
pretty	similar	 to	the	echo	request	we	 looked	at	 in	the	previous	section	(see
Figure	7-32).

In	 this	 capture,	 the	 packets	 were	 generated	 by	 running	 the	 command
tracert 4.2.2.1.	To	use	 traceroute	on	Windows,	enter	tracert ipaddress	at	 the
command	 prompt,	 replacing	 ipaddress	 with	 the	 actual	 IP	 address	 of	 a
device	whose	path	you	want	to	discover.	To	use	traceroute	on	Linux	or	Mac,
use	the	command	traceroute ipaddress.

Figure	7-32:	An	ICMP	echo	request	packet	with	a	TTL	value	of	1

At	first	glance,	this	packet	appears	to	be	a	simple	echo	request	➌	 from
192.168.100.138	 to	 4.2.2.1	➊,	 and	 everything	 in	 the	 ICMP	portion	 of	 the
packet	 is	 identical	 to	 the	 formatting	 of	 an	 echo	 request	 packet.	However,



when	you	expand	the	IP	header	of	this	packet,	you’ll	notice	something	odd:
the	 packet’s	 TTL	 value	 is	 set	 to	 1	 ➋,	 meaning	 that	 the	 packet	 will	 be
dropped	 at	 the	 first	 router	 that	 it	 hits.	 Because	 the	 destination	 4.2.2.1
address	is	an	internet	address,	we	know	that	there	must	be	at	least	one	router
between	our	 source	 and	destination	devices,	 so	 there	 is	no	way	 this	packet
will	reach	its	destination.	That’s	good	for	us,	because	traceroute	relies	on	the
fact	that	this	packet	will	make	it	to	only	the	first	router	it	traverses.

The	 second	 packet	 is,	 as	 expected,	 a	 reply	 from	 the	 first	 router	 we
reached	 along	 the	 path	 to	 our	 destination	 (see	 Figure	 7-33).	 This	 packet
reached	this	device	at	192.168.100.1,	its	TTL	was	decremented	to	0,	and	the
packet	could	not	be	transmitted	further,	so	the	router	replied	with	an	ICMP
response.	This	packet	is	type	11	➊	and	code	0	➋,	data	that	tells	us	that	the
destination	was	unreachable	because	the	packet’s	TTL	was	exceeded	during
transit.

This	 ICMP	 packet	 is	 sometimes	 called	 a	 double-headed	 packet,	 because
the	 tail	 end	 of	 its	 ICMP	 portion	 contains	 a	 copy	 of	 the	 IP	 header	➌	 and
ICMP	data	➍	that	were	sent	in	the	original	echo	request.	This	information
can	prove	very	useful	for	troubleshooting.



Figure	7-33:	An	ICMP	response	from	the	first	router	along	the	path

This	process	of	sending	packets	with	a	TTL	value	of	1	occurs	two	more
times	before	we	get	to	packet	7.	Here,	you	see	the	same	thing	you	saw	in	the
first	packet,	except	that	this	time,	the	TTL	value	in	the	IP	header	is	set	to	2,
which	ensures	the	packet	will	make	 it	 to	the	second	hop	router	before	 it	 is
dropped.	 As	 expected,	 we	 receive	 a	 reply	 from	 the	 next	 hop	 router,
12.180.241.1,	 with	 the	 same	 ICMP	 destination	 unreachable	 and	 TTL
exceeded	messages.

This	process	 continues,	with	 the	TTL	value	 increasing	by	1,	until	 the
destination	4.2.2.1	is	reached.	Right	before	that	happens,	however,	you’ll	see
in	Figure	7-34	that	the	request	on	line	8	timed	out.	How	can	a	request	along
the	path	time	out	and	the	process	still	complete	successfully?	Typically,	this
happens	when	a	router	is	configured	to	not	respond	to	ICMP	requests.	The
router	 still	 receives	 the	 request	 and	 passes	 the	 data	 forward	 to	 the	 next



router,	which	is	why	we’re	able	to	see	the	next	hop	on	line	9	in	Figure	7-34.
It	 just	didn’t	generate	 the	 ICMP	time	 to	 live	exceeded	packet	as	 the	other
hops	did.	With	no	response,	tracert	assumes	the	request	has	timed	out	and
moves	on	to	the	next	one.

To	sum	up,	this	traceroute	process	has	communicated	with	each	router
along	the	path,	building	a	map	of	the	route	to	the	destination.	An	example
map	is	shown	in	Figure	7-34.

Figure	7-34:	A	sample	output	from	the	traceroute	utility

NOTE

The	discussion	here	on	traceroute	is	generally	Windows	focused	because	this
utility	uses	ICMP	exclusively.	The	traceroute	utility	on	Linux	is	a	bit	more
versatile	and	can	utilize	other	protocols	in	order	to	perform	route	path	tracing.

ICMP	Version	6	(ICMPv6)

The	 updated	 version	 of	 IP	 relies	 heavily	 on	 ICMP	 for	 functions	 such	 as
neighbor	 solicitation	 and	 path	 discovery,	 as	 demonstrated	 in	 earlier
examples.	ICMPv6	was	established	with	RFC	4443	to	support	the	feature	set
needed	 for	 IPv6,	 along	 with	 additional	 enhancements.	 We	 don’t	 cover
ICMPv6	separately	in	this	book	because	it	uses	the	same	packet	structure	as
do	ICMP	packets.

ICMPv6	 packets	 are	 generally	 classified	 as	 either	 error	 messages	 or
informational	messages.	 You	 can	 find	 a	 full	 list	 of	 the	 available	 types	 and



codes	 from	 IANA	 here:	 http://www.iana.org/assignments/icmpv6-
parameters/icmpv6-parameters.xhtml.

This	 chapter	 has	 introduced	 you	 to	 a	 few	 of	 the	 most	 important
protocols	you	will	 examine	during	 the	process	of	packet	 analysis.	ARP,	 IP,
and	 ICMP	are	 at	 the	 foundation	of	 all	 network	 communications,	 and	 they
are	critical	to	just	about	every	daily	task	you	will	perform.	In	Chapter	8,	we
will	look	at	common	transport	layer	protocols,	TCP	and	UDP.



8
TRANSPORT	LAYER	PROTOCOLS

In	 this	 chapter,	 we’ll	 continue	 to	 examine	 individual
protocols	 and	 how	 they	 appear	 at	 the	 packet	 level.
Moving	up	the	OSI	model,	we’ll	look	at	the	transport
layer	 and	 the	 two	most	 common	 transport	 protocols,
TCP	and	UDP.

Transmission	Control	Protocol	(TCP)

The	 ultimate	 goal	 of	 the	Transmission	 Control	 Protocol	 (TCP)	 is	 to	 provide
endto-end	reliability	for	the	delivery	of	data.	TCP,	which	is	defined	in	RFC
793,	handles	data	sequencing	and	error	recovery,	and	ultimately	ensures	that
data	gets	where	 it’s	supposed	to	go.	TCP	is	considered	a	 connection-oriented
protocol	because	 it	 establishes	 a	 formal	 connection	before	 transmitting	data,
tracks	packet	delivery,	and	usually	attempts	to	formally	close	communication
channels	when	transmission	is	complete.	Many	commonly	used	application-
layer	 protocols	 rely	 on	 TCP	 and	 IP	 to	 deliver	 packets	 to	 their	 final
destination.



TCP	Packet	Structure

TCP	provides	a	great	deal	of	functionality,	as	reflected	in	the	complexity	of
its	header.	As	shown	in	Figure	8-1,	the	following	are	the	TCP	header	fields:

Source	Port			The	port	used	to	transmit	the	packet.
Destination	Port			The	port	to	which	the	packet	will	be	transmitted.
Sequence	Number	 	 	 The	 number	 used	 to	 identify	 a	 TCP	 segment.
This	field	is	used	to	ensure	that	parts	of	a	data	stream	are	not	missing.
Acknowledgment	 Number	 	 	 The	 sequence	 number	 that	 is	 to	 be
expected	 in	 the	 next	 packet	 from	 the	 other	 device	 taking	 part	 in	 the
communication.
Flags	 	 	 The	 URG,	 ACK,	 PSH,	 RST,	 SYN,	 and	 FIN	 flags	 for
identifying	the	type	of	TCP	packet	being	transmitted.
Window	Size			The	size	of	the	TCP	receiver	buffer	in	bytes.
Checksum	 	 	Used	to	ensure	the	contents	of	the	TCP	header	and	data
are	intact	upon	arrival.
Urgent	 Pointer	 	 	 If	 the	 URG	 flag	 is	 set,	 this	 field	 is	 examined	 for
additional	 instructions	 for	 where	 the	 CPU	 should	 begin	 reading	 the
data	within	the	packet.
Options			Various	optional	fields	that	can	be	specified	in	a	TCP	packet.

Figure	8-1:	The	TCP	header

TCP	Ports



tcp_ports.pcapng

All	 TCP	 communication	 takes	 place	 using	 source	 and	 destination	 ports,
which	can	be	found	in	every	TCP	header.	A	port	 is	 like	the	 jack	on	an	old
telephone	 switchboard.	 A	 switchboard	 operator	would	monitor	 a	 board	 of
lights	and	plugs.	When	a	light	lit	up,	he	would	connect	with	the	caller,	ask
who	 she	 wanted	 to	 talk	 to,	 and	 then	 connect	 her	 to	 the	 other	 party	 by
plugging	in	a	cable.	Every	call	needed	to	have	a	source	port	(the	caller)	and	a
destination	port	(the	recipient).	TCP	ports	work	in	much	the	same	fashion.

To	transmit	data	to	a	particular	application	on	a	remote	server	or	device,
a	TCP	packet	must	know	the	port	the	remote	service	is	listening	on.	If	you
try	to	access	an	application	on	a	port	other	than	the	one	configured	for	use,
the	communication	will	fail.

The	source	port	 in	this	sequence	 isn’t	 incredibly	 important	and	can	be
selected	 randomly.	 The	 remote	 server	 will	 simply	 determine	 the	 port	 to
communicate	with	from	the	original	packet	it’s	sent	(see	Figure	8-2).

Figure	8-2:	TCP	uses	ports	to	transmit	data.

There	 are	 65,535	 ports	 available	 for	 use	 when	 communicating	 with
TCP.	We	typically	divide	these	into	two	groups:

•					The	system	port	group	(also	known	as	the	standard	port	or	well-known



port	group)	is	from	1	through	1023	(ignoring	0	because	it’s	reserved).
Well-known,	established	services	generally	use	ports	that	lie	within	the
system	port	grouping.

•					The	ephemeral	port	group	is	from	1024	through	65535	(although	some
operating	systems	have	different	definitions	for	this).	Only	one	service
can	communicate	on	a	port	at	any	given	time,	so	modern	operating
systems	select	source	ports	randomly	in	an	effort	to	make
communications	unique.	These	source	ports	are	typically	located	in	the
ephemeral	range.

Let’s	 examine	a	 couple	of	TCP	packets	 and	 identify	 the	port	numbers
they	are	using	by	opening	 the	 file	 tcp_ports.pcapng.	 In	 this	 file,	we	have	 the
HTTP	communication	of	a	client	browsing	to	two	websites.	As	mentioned
previously,	HTTP	uses	TCP	for	communication,	making	it	a	great	example
of	standard	TCP	traffic.

In	 the	 first	 packet	 in	 this	 file	 (see	 Figure	 8-3),	 the	 first	 two	 values
represent	the	packet’s	source	port	and	destination	port.	This	packet	is	being
sent	 from	172.16.16.128	 to	212.58.226.142.	The	source	port	 is	2826	➊,	 an
ephemeral	port.	(Remember	that	source	ports	are	chosen	at	random	by	the
operating	system,	although	they	can	increment	from	that	random	selection.)
The	destination	port	is	a	system	port,	port	80	➋,	the	standard	port	used	for
web	servers	using	HTTP.

Figure	8-3:	The	source	and	destination	ports	can	be	found	in	the	TCP	header.

Notice	 that	Wireshark	 labels	 these	 ports	 as	 slc-systemlog	 (2826)	 and



http	(80).	Wireshark	maintains	a	list	of	ports	and	their	most	common	uses.
Although	 system	 ports	 are	 primarily	 the	 ones	 with	 labeled	 common	 uses,
many	 ephemeral	 ports	 have	 commonly	used	 services	 associated	with	 them.
The	labeling	of	these	ports	can	be	confusing,	so	it’s	typically	best	to	disable
it	 by	 turning	 off	 transport	 name	 resolution.	 To	 do	 this,	 go	 to	 Edit	 ▶
Preferences	▶	Name	 Resolution	 and	 uncheck	 Enable	 Transport	 Name
Resolution.	If	you	wish	to	leave	this	option	enabled	but	want	to	change	how
Wireshark	 identifies	a	certain	port,	you	can	do	so	by	modifying	the	 services
file	located	in	the	Wireshark	system	directory.	The	contents	of	this	file	are
based	on	the	IANA	common	ports	listing	(see	“Using	a	Custom	hosts	File”
on	page	86	for	an	example	of	how	to	edit	a	name	resolution	file).

The	 second	 packet	 is	 sent	 back	 from	212.58.226.142	 to	 172.16.16.128
(see	Figure	8-4).	As	with	the	IP	addresses,	the	source	and	destination	ports
are	now	also	switched	➊.

In	 most	 cases,	 TCP-based	 communication	 works	 the	 same	 way:	 a
random	source	port	is	chosen	to	communicate	to	a	known	destination	port.
Once	 this	 initial	 packet	 is	 sent,	 the	 remote	 device	 communicates	 with	 the
source	device	using	the	established	ports.

This	sample	capture	file	includes	one	more	communication	stream.	See
if	you	can	locate	the	port	numbers	it	uses	for	communication.

Figure	8-4:	Switching	the	source	and	destination	port	numbers	for	reverse	communication

NOTE

As	we	progress	through	this	book,	you’ll	learn	more	about	the	ports	associated



with	common	protocols	and	services.	Eventually,	you’ll	be	able	to	profile
services	and	devices	by	the	ports	they	use.	For	a	comprehensive	list	of	common
ports,	look	at	the	services	file	located	in	the	Wireshark	system	directory.

The	TCP	Three-Way	Handshake

All	 TCP-based	 communication	must	 begin	 with	 a	 handshake	 between	 two
hosts.	This	handshake	process	serves	several	purposes:

•					It	allows	the	transmitting	host	to	ensure	that	the	recipient	host	is	up	and
able	to	communicate.

•					It	lets	the	transmitting	host	check	that	the	recipient	is	listening	on	the
port	the	transmitting	host	is	attempting	to	communicate	on.

tcp_handshake.pcapng

•					It	allows	the	transmitting	host	to	send	its	starting	sequence	number	to
the	recipient	so	that	both	hosts	can	keep	the	stream	of	packets	in	proper
sequence.
The	TCP	handshake	occurs	 in	 three	 steps,	 as	 shown	 in	Figure	8-5.	 In

the	 first	 step,	 the	device	 that	wants	 to	communicate	 (host	A)	 sends	a	TCP
packet	to	its	target	(host	B).	This	initial	packet	contains	no	data	other	than
the	 lower-layer	 protocol	 headers.	 The	TCP	 header	 in	 this	 packet	 has	 the
SYN	 flag	 set	 and	 includes	 the	 initial	 sequence	 number	 and	 maximum
segment	size	(MSS)	that	will	be	used	for	the	communication	process.	Host	B
responds	to	this	packet	by	sending	a	similar	packet	with	the	SYN	and	ACK
flags	 set,	 along	with	 its	 initial	 sequence	number.	Finally,	host	A	 sends	one
last	 packet	 to	 host	 B	 with	 only	 the	 ACK	 flag	 set.	 Once	 this	 process	 is
completed,	 both	 devices	 should	 have	 all	 of	 the	 information	 they	 need	 to
begin	communicating	properly.

NOTE

TCP	packets	are	often	referred	to	by	the	flags	they	have	set.	For	example,
rather	than	refer	to	a	packet	as	a	TCP	packet	with	the	SYN	flag	set,	we	call
that	packet	a	SYN	packet.	As	such,	the	packets	used	in	the	TCP	handshake
process	are	referred	to	as	SYN,	SYN/ACK,	and	ACK.



To	 see	 this	 process	 in	 action,	 open	 tcp_handshake.pcapng.	 Wireshark
includes	a	feature	that	replaces	the	sequence	numbers	of	TCP	packets	with
relative	 numbers	 for	 easier	 analysis.	 For	 our	 purposes,	 we’ll	 disable	 this
feature	in	order	to	see	the	actual	sequence	numbers.	To	disable	this,	choose
Edit	▶	Preferences,	 expand	 the	Protocols	 heading,	 and	 choose	TCP.	 In
the	 window,	 uncheck	 the	 box	 next	 to	Relative	 Sequence	 Numbers	 and
click	OK.

Figure	8-5:	The	TCP	three-way	handshake

The	first	packet	in	this	capture	represents	our	initial	SYN	packet	➋	(see
Figure	8-6).	The	packet	is	transmitted	from	172.16.16.128	on	port	2826	to
212.58.226.142	 on	 port	 80.	 We	 can	 see	 here	 that	 the	 sequence	 number
transmitted	is	3691127924	➊.

The	second	packet	in	the	handshake	is	the	SYN/ACK	response	➌	from
212.58.226.142	(see	Figure	8-7).	This	packet	also	contains	this	host’s	initial
sequence	 number	 (233779340)	 ➊	 and	 an	 acknowledgment	 number
(3691127925)	➋.	The	acknowledgment	number	shown	here	is	1	more	than
the	 sequence	number	 included	 in	 the	 previous	 packet,	 because	 this	 field	 is
used	to	specify	the	next	sequence	number	the	host	expects	to	receive.

The	 final	 packet	 is	 the	 ACK	➋	 packet	 sent	 from	 172.16.16.128	 (see
Figure	 8-8).	 This	 packet,	 as	 expected,	 contains	 the	 sequence	 number
3691127925	➊	as	defined	in	the	previous	packet’s	Acknowledgment	number
field.

A	handshake	occurs	before	every	TCP	communication	sequence.	When
you	are	 sorting	 through	a	busy	capture	 file	 in	 search	of	 the	beginning	of	a
communication	 sequence,	 the	 sequence	 SYN-SYN/ACK-ACK	 is	 a	 great



marker.

Figure	8-6:	The	initial	SYN	packet

Figure	8-7:	The	SYN/ACK	response



Figure	8-8:	The	final	ACK

TCP	Teardown

tcp_teardown.pcapng

Most	greetings	eventually	have	a	good-bye	and,	 in	 the	case	of	TCP,	every
handshake	 has	 a	 teardown.	 The	TCP	 teardown	 is	 used	 to	 gracefully	 end	 a
connection	 between	 two	 devices	 after	 they	 have	 finished	 communicating.
This	process	involves	four	packets,	and	it	utilizes	the	FIN	flag	to	signify	the
end	of	a	connection.

In	 a	 teardown	 sequence,	 host	 A	 tells	 host	 B	 that	 it	 is	 finished
communicating	by	sending	a	TCP	packet	with	the	FIN	and	ACK	flags	set.
Host	 B	 responds	 with	 an	 ACK	 packet	 and	 transmits	 its	 own	 FIN/ACK
packet.	Host	A	 responds	with	 an	ACK	packet,	 ending	 the	 communication.
This	process	is	illustrated	in	Figure	8-9.



Figure	8-9:	The	TCP	teardown	process

To	 view	 this	 process	 in	Wireshark,	 open	 the	 file	 tcp_teardown.pcapng.
Beginning	with	 the	 first	packet	 in	 the	 sequence	 (see	Figure	8-10),	 you	can
see	that	the	device	at	67.228.110.120	initiates	teardown	by	sending	a	packet
with	the	FIN	and	ACK	flags	set	➊.



Figure	8-10:	The	FIN/ACK	packet	initiates	the	teardown	process.

Once	this	packet	is	sent,	172.16.16.128	responds	with	an	ACK	packet	to
acknowledge	receipt	of	the	first	packet,	and	it	sends	a	FIN/ACK	packet.	The
process	 is	complete	when	67.228.110.120	sends	a	 final	ACK.	At	 this	point,
the	 communication	 between	 the	 two	 devices	 ends.	 If	 they	 need	 to	 begin
communicating	again,	they	will	have	to	complete	a	new	TCP	handshake.

TCP	Resets

tcp_refuseconnection.pcapng

In	an	ideal	world,	every	connection	would	end	gracefully	with	a	TCP	tear-
down.	In	reality,	connections	often	end	abruptly.	For	example,	a	host	may	be
misconfigured,	 or	 a	 potential	 attacker	 may	 perform	 a	 port	 scan.	 In	 these
cases,	when	a	packet	is	sent	to	a	device	that	is	not	willing	to	accept	it,	a	TCP
packet	with	the	RST	flag	set	may	be	sent.	The	RST	flag	is	used	to	indicate
that	a	connection	was	closed	abruptly	or	to	refuse	a	connection	attempt.

The	file	tcp_refuseconnection.pcapng	displays	an	example	of	network	traffic
that	includes	an	RST	packet.	The	first	packet	in	this	file	is	from	the	host	at
192.168.100.138,	 which	 is	 attempting	 to	 communicate	 with	 192.168.100.1
on	port	80.	What	this	host	doesn’t	know	is	that	192.168.100.1	isn’t	listening
on	 port	 80	 because	 it’s	 a	 Cisco	 router	 with	 no	 web	 interface	 configured.
There	 is	 no	 service	 configured	 to	 accept	 connections	 on	 that	 port.	 In
response	to	this	attempted	communication,	192.168.100.1	sends	a	packet	to
192.168.100.138	 telling	 it	 that	 communication	won’t	 be	possible	 over	 port
80.	Figure	8-11	 shows	 the	abrupt	end	 to	 this	 attempted	communication	 in
the	TCP	 header	 of	 the	 second	 packet.	 The	 RST	 packet	 contains	 nothing
other	than	RST	and	ACK	flags	➊,	and	no	further	communication	follows.



Figure	8-11:	The	RST	and	ACK	flags	signify	the	end	of	communication.

An	RST	packet	ends	communication	whether	it	arrives	at	the	beginning
of	 an	 attempted	 communication	 sequence,	 as	 in	 this	 example,	 or	 is	 sent	 in
the	middle	of	the	communication	between	hosts.

User	Datagram	Protocol	(UDP)

udp_dnsrequest.pcapng

The	User	Datagram	Protocol	 (UDP)	 is	 the	other	 layer	4	protocol	commonly
used	on	modern	networks.	While	TCP	is	designed	for	reliable	data	delivery
with	built-in	error	checking,	UDP	aims	to	provide	speedy	transmission.	For
this	 reason,	 UDP	 is	 a	 best-effort	 service,	 commonly	 referred	 to	 as	 a
connectionless	 protocol.	 A	 connectionless	 protocol	 doesn’t	 formally	 establish
and	 terminate	a	 connection	between	hosts,	unlike	TCP	with	 its	handshake
and	teardown	processes.



With	a	connectionless	protocol,	which	doesn’t	provide	reliable	services,
it	would	seem	that	UDP	traffic	would	be	flaky	at	best.	That	would	be	true,
except	that	the	protocols	that	rely	on	UDP	typically	have	their	own	built-in
reliability	services	or	use	certain	 features	of	 ICMP	to	make	the	connection
somewhat	more	reliable.	For	example,	the	application-layer	protocols	DNS
and	DHCP,	which	are	highly	dependent	on	the	speed	of	packet	transmission
across	a	network,	use	UDP	as	their	transport	layer	protocol,	but	they	handle
error	checking	and	retransmission	timers	themselves.

UDP	Packet	Structure

udp_dnsrequest.pcapng

The	UDP	 header	 is	 much	 smaller	 and	 simpler	 than	 the	 TCP	 header.	 As
shown	in	Figure	8-12,	the	following	are	the	UDP	header	fields:

Source	Port			The	port	used	to	transmit	the	packet
Destination	Port			The	port	to	which	the	packet	will	be	transmitted
Packet	Length			The	length	of	the	packet	in	bytes
Checksum	 	 	Used	to	ensure	that	the	contents	of	the	UDP	header	and
data	are	intact	upon	arrival

Figure	8-12:	The	UDP	header

The	 file	 udp_dnsrequest.pcapng	 contains	 one	 packet.	 This	 packet
represents	a	DNS	request,	which	uses	UDP.	When	you	expand	the	packet’s
UDP	header,	you’ll	see	four	fields	(see	Figure	8-13).



Figure	8-13:	The	contents	of	a	UDP	packet	are	very	simple.

The	 key	 point	 to	 remember	 is	 that	UDP	does	 not	 care	 about	 reliable
delivery.	Therefore,	any	application	that	uses	UDP	must	take	special	steps	to
ensure	reliable	delivery,	if	it	is	necessary.	This	is	in	contrast	to	TCP,	which
utilizes	a	formal	connection	setup	and	teardown,	and	has	features	in	place	to
validate	that	packets	were	transmitted	successfully.

This	chapter	has	 introduced	you	 to	 the	 transport	 layer	protocols	TCP
and	UDP.	Not	unlike	network	protocols,	TCP	and	UDP	are	at	the	core	of
most	 of	 your	 daily	 communication,	 and	 the	 ability	 to	 analyze	 them
effectively	 is	critical	 to	becoming	an	effective	packet	analyst.	 In	Chapter	9,
we	will	look	at	common	application-layer	protocols.



9
COMMON	UPPER-LAYER	PROTOCOLS

In	 this	 chapter,	 we’ll	 continue	 to	 examine	 the
functions	of	 individual	protocols,	as	well	as	what	they
look	 like	when	 viewed	with	Wireshark.	We’ll	 discuss
five	 of	 the	 most	 common	 upper-layer	 (layer	 7)
protocols:	DHCP,	DNS,	HTTP,	and	SMTP.

Dynamic	Host	Configuration	Protocol	(DHCP)

In	the	early	days	of	networking,	when	a	device	wanted	to	communicate	over
a	network,	 it	needed	to	be	assigned	an	address	by	hand.	As	networks	grew,
this	 manual	 process	 quickly	 became	 cumbersome.	 To	 solve	 this	 problem,
Bootstrap	Protocol	(BOOTP)	was	created	to	automatically	assign	addresses
to	 network-connected	 devices.	 BOOTP	 was	 later	 replaced	 with	 the	 more
sophisticated	Dynamic	Host	Configuration	Protocol	(DHCP).

DHCP	is	an	application-layer	protocol	responsible	for	allowing	a	device
to	 automatically	 obtain	 an	 IP	 address	 (and	 addresses	 of	 other	 important
network	assets,	such	as	DNS	servers	and	routers).	Most	DHCP	servers	today
also	provide	other	parameters	to	clients,	such	as	the	addresses	of	the	default
gateway	and	DNS	servers	in	use	on	the	network.



DHCP	Packet	Structure

DHCP	packets	can	carry	quite	a	lot	of	information	to	a	client.	As	shown	in
Figure	9-1,	the	following	fields	are	present	within	a	DHCP	packet:

OpCode			Indicates	whether	the	packet	is	a	DHCP	request	or	a	DHCP
reply
Hardware	 Type	 	 	 The	 type	 of	 hardware	 address	 (10MB	 Ethernet,
IEEE	802,	ATM,	and	so	on)
Hardware	Length			The	length	of	the	hardware	address
Hops			Used	by	relay	agents	to	assist	in	finding	a	DHCP	server
Transaction	 ID	 	 	 A	 random	 number	 used	 to	 pair	 requests	 with
responses
Seconds	Elapsed	 	 	Seconds	 since	 the	client	 first	 requested	an	address
from	the	DHCP	server
Flags	 	 	 The	 types	 of	 traffic	 the	 DHCP	 client	 can	 accept	 (unicast,
broadcast,	and	so	on)



Figure	9-1:	The	DHCP	packet	structure

Client	IP	Address			The	client’s	IP	address	(derived	from	the	Your	IP
Address	field)
Your	 IP	 Address	 	 	 The	 IP	 address	 offered	 by	 the	 DHCP	 server
(ultimately	becomes	the	Client	IP	Address	field	value)
Server	IP	Address			The	DHCP	server’s	IP	address
Gateway	IP	Address			The	IP	address	of	the	network’s	default	gateway
Client	Hardware	Address			The	client’s	MAC	address
Server	Host	Name			The	server’s	host	name	(optional)
Boot	File			A	boot	file	for	use	by	DHCP	(optional)
Options			Used	to	expand	the	structure	of	the	DHCP	packet	to	give	it
more	features

The	DHCP	Initialization	Process



dhcp_nolease	_initialization.pcapng

The	 primary	 goal	 of	 DHCP	 is	 to	 assign	 addresses	 to	 clients	 during	 the
initialization	process.	The	renewal	process	takes	place	between	a	single	client
and	 a	 DHCP	 server,	 as	 shown	 in	 the	 file	 dhcp_nolease_initialization.pcapng.
The	DHCP	initialization	process	is	often	referred	to	as	the	DORA	process
because	 it	 uses	 four	 types	 of	 DHCP	 packets:	 discover,	 offer,	 request,	 and
acknowledgment,	 as	 shown	 in	 Figure	 9-2.	Here,	 we’ll	 take	 a	 look	 at	 each
type	of	DORA	packet.

Figure	9-2:	The	DHCP	DORA	process

The	Discover	Packet

As	 you	 can	 see	 in	 the	 referenced	 capture	 file,	 the	 first	 packet	 is	 sent	 from
0.0.0.0	 on	 port	 68	 to	 255.255.255.255	 on	 port	 67.	The	 client	 uses	 0.0.0.0
because	 it	 does	 not	 yet	 have	 an	 IP	 address.	 The	 packet	 is	 sent	 to
255.255.255.255	because	this	is	the	network-independent	broadcast	address,
thus	 ensuring	 that	 this	 packet	 will	 be	 sent	 out	 to	 every	 device	 on	 the
network.	Because	 the	 device	 doesn’t	 know	 the	 address	 of	 a	DHCP	 server,
this	first	packet	is	sent	in	an	attempt	to	find	a	DHCP	server	that	will	listen.

Examining	 the	 Packet	 Details	 pane,	 the	 first	 thing	 we	 notice	 is	 that
DHCP	 relies	 on	 UDP	 as	 its	 transport	 layer	 protocol.	 DHCP	 is	 very
concerned	 with	 the	 speed	 at	 which	 a	 client	 receives	 the	 information	 it’s
requesting.	 DHCP	 has	 its	 own	 built-in	 reliability	 measures,	 which	 means
UDP	 is	 a	 perfect	 fit.	 You	 can	 see	 the	 details	 of	 the	 discovery	 process	 by



examining	 the	 first	 packet’s	DHCP	portion	 in	 the	Packet	Details	 pane,	 as
shown	in	Figure	9-3.

Figure	9-3:	The	DHCP	discover	packet

NOTE

Because	Wireshark	still	references	BOOTP	when	dealing	with	DHCP,	you’ll
see	a	Bootstrap	Protocol	section	in	the	Packet	Details	pane,	rather	than	a
DHCP	section.	Nevertheless,	I’ll	refer	to	this	as	the	packet’s	DHCP	portion
throughout	this	book.

This	packet	 is	a	request,	 identified	by	the	(1)	 in	the	Message	type	field



➊.	Most	of	the	fields	in	this	discovery	packet	are	either	all	zeros	(as	you	can
see	in	the	IP	address	fields	➋)	or	pretty	self-explanatory,	based	on	the	listing
of	DHCP	fields	in	the	previous	section.	The	meat	of	this	packet	is	in	its	four
Option	fields	➌.

DHCP	Message	Type	 	 	 This	 is	 option	 type	 53,	 with	 length	 1	 and	 a
value	of	Discover (1).	These	values	indicate	that	this	is	a	DHCP	discover
packet.
Client	 Identifier	 	 	 This	 provides	 additional	 information	 about	 the
client	requesting	an	IP	address.
Requested	IP	Address			This	supplies	the	IP	address	the	client	would
like	 to	 receive.	This	 can	 be	 a	 previously	 used	 IP	 address	 or	 0.0.0.0	 to
indicate	no	preference.
Parameter	Request	List	 	 	This	 lists	 the	different	configuration	 items
(IP	 addresses	 of	 other	 important	 network	 devices	 and	 other	 non	 IP
items)	the	client	would	like	to	receive	from	the	DHCP	server.

The	Offer	Packet

The	 second	 packet	 in	 this	 file	 lists	 valid	 IP	 addresses	 in	 its	 IP	 header,
showing	 a	 packet	 traveling	 from	 192.168.1.5	 to	 192.168.1.10,	 as	 shown	 in
Figure	9-4.	The	client	doesn’t	actually	have	the	192.168.1.10	address	yet,	so
the	 server	 will	 first	 attempt	 to	 communicate	 with	 the	 client	 using	 its
hardware	address,	as	provided	by	ARP.	If	communication	isn’t	possible,	the
server	will	simply	broadcast	the	offer	to	communicate.

The	 DHCP	 portion	 of	 this	 second	 packet,	 called	 the	 offer	 packet,
indicates	that	the	Message	type	is	a	reply	➊.	This	packet	contains	the	same
Transaction	 ID	 as	 the	 previous	 packet	➋,	 which	 tells	 us	 that	 this	 reply	 is
indeed	a	response	to	our	original	request.

The	 offer	 packet	 is	 sent	 by	 the	 DHCP	 server	 in	 order	 to	 offer	 its
services	to	the	client.	It	does	so	by	supplying	information	about	itself	and	the
addressing	 it	 wants	 to	 provide	 the	 client.	 In	 Figure	 9-4,	 the	 IP	 address
192.168.1.10	 in	 the	 Your	 (client)	 IP	 address	 field	 is	 being	 offered	 to	 the
client	➌	from	192.168.1.5	identified	by	the	Next	server	IP	address	field	➍.

The	first	option	listed	identifies	the	packet	as	a	DHCP Offer	➎.	The	options



that	follow	are	supplied	by	the	server	and	indicate	the	additional	information
it	can	offer,	along	with	the	client’s	IP	address.	You	can	see	that	it	offers	the
following:

•					An	IP	address	lease	time	of	10	minutes
•					A	subnet	mask	of	255.255.255.0
•					A	broadcast	address	of	192.168.1.255
•					A	router	address	of	192.168.1.254
•					A	domain	name	of	mydomain.example
•					Domain	name	server	addresses	of	192.168.1.1	and	192.168.1.2



Figure	9-4:	The	DHCP	offer	packet

The	Request	Packet

Once	the	client	receives	an	offer	from	the	DHCP	server,	it	should	accept	it
with	a	DHCP	request	packet,	as	shown	in	Figure	9-5.

The	 third	 packet	 in	 this	 capture	 still	 comes	 from	 IP	 address	 0.0.0.0,
because	we	have	not	yet	completed	the	process	of	obtaining	an	IP	address	➊.
The	packet	now	knows	the	DHCP	server	it	is	communicating	with.



Figure	9-5:	The	DHCP	request	packet

The	Message	 type	 field	 shows	 that	 this	 packet	 is	 a	 request	➋,	 and	 the
Transaction	ID	field	is	the	same	as	in	the	first	two	packets	➌,	indicating	they
are	part	of	the	same	process.	This	packet	is	similar	to	the	discover	packet,	in
that	all	of	its	IP-addressing	information	is	zeroed.

Finally,	in	the	Option	fields,	we	see	that	this	is	a	DHCP Request	➍.	Notice
that	the	requested	IP	address	is	no	longer	blank	and	that	the	DHCP	Server



Identifier	field	also	contains	an	address	➎.

The	Acknowledgment	Packet

In	 the	 final	 step	 in	 this	 process,	 the	DHCP	 server	 sends	 the	 requested	 IP
addresses	 to	 the	 client	 in	 an	 acknowledgment	 packet	 and	 records	 that
information	in	its	database,	as	shown	in	Figure	9-6.	The	client	now	has	an	IP
address	and	can	use	it	to	begin	communicating	on	the	network.

Figure	9-6:	The	DCHP	acknowledgment	packet

DHCP	In-Lease	Renewal

dhcp_inlease	_renewal.pcapng



When	 a	DHCP	 server	 assigns	 an	 IP	 address	 to	 a	 device,	 it	 leases	 it	 to	 the
client.	This	means	that	the	client	is	allowed	to	use	the	IP	address	for	only	a
limited	amount	of	time	before	it	must	renew	the	lease.	The	DORA	process
just	 discussed	 occurs	 the	 first	 time	 a	 client	 gets	 an	 IP	 address	 or	when	 its
lease	 time	has	 expired.	 In	 either	 case,	 the	device	 is	 considered	 to	be	 out	 of
lease.

When	 a	 client	 with	 an	 IP	 address	 in-lease	 reboots,	 it	must	 perform	 a
truncated	version	of	 the	DORA	process	 in	order	 to	 reclaim	 its	 IP	 address.
This	process	is	called	an	in-lease	renewal.

In	 the	 case	 of	 a	 lease	 renewal,	 the	 discovery	 and	 offer	 packets	 are
unnecessary.	Think	of	an	in-lease	renewal	as	being	the	same	DORA	process
used	in	an	out-of-lease	renewal,	but	the	in-lease	renewal	doesn’t	need	to	do
as	much,	 leaving	only	 the	request	and	acknowledgment	 steps.	You’ll	 find	a
sample	capture	of	an	in-lease	renewal	in	the	file	dhcp_inlease_renewal.pcapng.

DHCP	Options	and	Message	Types

DHCP’s	 real	 flexibility	 lies	 in	 its	 available	 options.	 As	 you’ve	 seen,	 the
packet’s	DHCP	options	 can	 vary	 in	 size	 and	 content.	The	packet’s	 overall
size	depends	on	the	combination	of	options	used.	You	can	view	a	full	list	of
the	 many	 DHCP	 options	 at	 http://www.iana.org/assignments/bootp-dhcp-
parameters/.

The	 only	 option	 required	 in	 all	 DHCP	 packets	 is	 the	 Message	 type
option	 (option	 53).	This	 option	 identifies	 how	 the	DHCP	client	 or	 server
will	 process	 the	 information	 contained	 within	 the	 packet.	 There	 are	 8
message	types,	as	defined	in	Table	9-1.

Table	9-1:	DHCP	Message	Types

Type
number

Message
type

Description

1 Discover Used	by	the	client	to	locate	available	DHCP	servers

2 Offer Sent	by	the	server	to	the	client	in	response	to	a	discover
packet

3 Request Sent	by	the	client	to	request	the	offered	parameters
from	the	server

http://www.iana.org/assignments/bootp-dhcp-parameters/


4 Decline Sent	by	the	client	to	the	server	to	indicate	invalid
parameters	within	a	packet

5 ACK Sent	by	the	server	to	the	client	with	the	configuration
parameters	requested

6 NAK Sent	by	the	client	to	the	server	to	refuse	a	request	for
configuration	parameters

7 Release Sent	by	the	client	to	the	server	to	cancel	a	lease	by
releasing	its	configuration	parameters

8 Inform Sent	by	the	client	to	the	server	to	ask	for	configuration
parameters	when	the	client	already	has	an	IP	address

DHCP	Version	6	(DHCPv6)

dhcp6_outlease_acquisition.pcapng

If	you	examine	the	packet	structure	for	a	DHCP	packet	in	Figure	9-1,	you’ll
see	that	 it	doesn’t	provide	enough	room	to	support	the	length	required	for
IPv6	 address	 allocation.	 Instead	 of	 retrofitting	 DHCP	 for	 this	 purpose,
DHCPv6	 was	 devised	 in	 RFC3315.	 Since	 DHCPv6	 isn’t	 built	 on	 the
concept	of	BOOTP,	its	packet	format	is	much	simpler	(Figure	9-7).

Figure	9-7:	The	DHCPv6	packet	structure

The	packet	structure	shown	here	contains	only	two	static	values,	which
function	 in	 the	same	manner	as	 their	DHCP	counterparts.	The	rest	of	 the
packet	structure	varies	depending	on	the	message	type	identified	in	the	first
byte.	Within	 the	 Options	 section,	 each	 option	 is	 identified	 with	 a	 2-byte
option	code	and	a	2-byte	length	field.	A	full	list	of	message	types	and	option
codes	 that	 can	 appear	 in	 these	 fields	 can	 be	 found	 here:
http://www.iana.org/assignments/dhcpv6-parameters/dhcpv6-parameters.xhtml.

http://www.iana.org/assignments/dhcpv6-parameters/dhcpv6-parameters.xhtml


DHCPv6	accomplishes	the	same	goal	as	DHCP,	but	to	understand	the
flow	 of	 DHCPv6	 communication,	 we	 must	 replace	 our	 DORA	 acronym
with	 a	 new	 one,	 SARR.	 This	 process	 is	 illustrated	 in	 Figure	 9-8,	 which
represents	a	client	that	is	currently	out	of	lease.

Figure	9-8:	The	DHCPv6	SARR	out-of-lease	renewal	process

The	SARR	process	has	four	steps:

1.	 Solicit:	An	initial	packet	is	sent	from	a	client	to	a	special	multicast
address	(ff02::1:2)	to	attempt	to	locate	available	DHCPv6	servers	on	the
network.

2.	 Advertise:	An	available	server	responds	directly	to	the	client	to	indicate
that	it	is	available	to	provide	addressing	and	configuration	information.

3.	 Request:	The	client	sends	a	formal	request	for	configuration
information	to	the	server	via	multicast.

4.	 Reply:	The	server	sends	all	available	requested	configuration
information	directly	to	the	client,	and	the	process	is	complete.

A	summary	of	this	process	is	shown	in	Figure	9-9,	which	is	taken	from
the	 file	 dhcp6_outlease_acquisition.pcapng.	 In	 this	 example,	 we	 see	 the	 SARR
process	 in	 action	 as	 a	 new	 host	 on	 the	 network	 (fe80::20c:29ff:fe5e:7744)
receives	 configuration	 information	 from	 a	 DHCPv6	 server	 (fe80::20c:29ff
:fe1f:a755).	Each	packet	represents	one	step	of	 the	SARR	process,	with	the
initial	 solicit	 and	 advertise	 packets	 tied	 together	 using	 the	 transaction	 ID



0x9de03f	 and	 the	 request	 and	 reply	packets	 associated	with	 the	 transaction
ID	0x2d1603.	While	 it	 isn’t	 shown	in	the	 figure,	 this	communication	takes
place	 over	 ports	 546	 and	 547,	 which	 are	 the	 standard	 ports	 used	 by
DHCPv6.

Figure	9-9:	A	client	obtaining	an	IPv6	address	via	DHCPv6

Overall,	the	packet	structure	of	DHCPv6	traffic	looks	a	lot	different,	but
most	 of	 the	 same	 concepts	 apply.	The	 process	 still	 requires	 some	 form	 of
DHCP	server	discovery	and	a	formal	retrieval	of	configuration	information.
Those	 transactions	 are	 all	 tied	 together	 via	 transaction	 identifiers	 in	 each
pair	 of	 packets	 exchanged	 between	 the	 client	 and	 server.	 IPv6	 addressing
can’t	be	supported	by	traditional	DHCP	mechanisms,	so	if	you	have	devices
getting	 IPv6	 addresses	 automatically	 from	 a	 server	 on	 your	 network,	 it’s
likely	 that	 you’re	 already	 running	 DHCPv6	 services	 on	 your	 network.	 If
you’d	like	to	compare	DHCP	and	DHCPv6	further,	I	recommend	opening
the	 packet	 captures	 discussed	 in	 this	 chapter	 side	 by	 side	 and	 stepping
through	them.

Domain	Name	System	(DNS)
The	 Domain	 Name	 System	 (DNS)	 is	 one	 of	 the	 most	 crucial	 internet
protocols	because	it	is	the	proverbial	molasses	that	holds	the	bread	together.
DNS	 ties	 domain	 names,	 such	 as	www.google.com,	 to	 IP	 addresses,	 such	 as
74.125.159.99.	When	we	want	to	communicate	with	a	networked	device	and
we	don’t	know	its	IP	address,	we	access	that	device	via	its	DNS	name.

DNS	servers	 store	 a	database	of	resource	 records	 of	 IP	address–to–DNS
name	mappings,	which	they	share	with	clients	and	other	DNS	servers.

NOTE

Because	the	architecture	of	DNS	servers	is	complicated,	we’ll	just	look	at	some
common	types	of	DNS	traffic.	You	can	review	the	various	DNS-related	RFCs
at	https://www.isc.org/community/rfcs/dns/.

http://www.google.com
https://www.isc.org/community/rfcs/dns/


DNS	Packet	Structure

As	 you	 can	 see	 in	 Figure	 9-10,	 the	 DNS	 packet	 structure	 is	 somewhat
different	 from	 that	 of	 the	 packet	 types	 we’ve	 discussed	 previously.	 The
following	fields	can	be	present	within	a	DNS	packet:

DNS	 ID	 Number	 	 	 Used	 to	 associate	 DNS	 queries	 with	 DNS
responses
Query/Response	(QR)	 	 	Denotes	whether	the	packet	is	a	DNS	query
or	response
OpCode			Defines	the	type	of	query	contained	in	the	message
Authoritative	Answers	(AA)	 	 	If	this	value	is	set	in	a	response	packet,
indicates	that	the	response	is	from	a	name	server	with	authority	over	the
domain
Truncation	(TC)			Indicates	that	the	response	was	truncated	because	it
was	too	large	to	fit	within	the	packet
Recursion	Desired	(RD)			When	this	value	is	set	in	a	query,	indicates
that	the	DNS	client	requests	a	recursive	query	if	the	target	name	server
doesn’t	contain	the	information	requested
Recursion	Available	(RA)	 	 	If	this	value	is	set	 in	a	response,	 indicates
that	the	name	server	supports	recursive	queries

Figure	9-10:	The	DNS	packet	structure

Reserved	(Z)	 	 	Defined	by	RFC	1035	 to	be	 set	as	all	 zeros;	however,
sometimes	it’s	used	as	an	extension	of	the	RCode	field
Response	 Code	 (RCode)	 	 	 Used	 in	 DNS	 responses	 to	 indicate	 the
presence	of	any	errors
Question	Count			The	number	of	entries	in	the	Questions	Section



Answer	Count			The	number	of	entries	in	the	Answers	Section
Name	 Server	 (Authority)	 Record	 Count	 	 	 The	 number	 of	 name
server	resource	records	in	the	Authority	Section
Additional	Records	Count			The	number	of	other	resource	records	in
the	Additional	Information	Section
Questions	Section	 	 	Variable-sized	section	that	contains	one	or	more
queries	for	information	to	be	sent	to	the	DNS	server
Answers	 Section	 	 	 Variable-sized	 section	 that	 carries	 one	 or	 more
resource	records	that	answer	queries
Authority	 Section	 	 	 Variable-sized	 section	 that	 contains	 resource
records	 that	 point	 to	 authoritative	 name	 servers	 that	 can	 be	 used	 to
continue	the	resolution	process
Additional	Information	Section			Variable-sized	section	that	contains
resource	 records	 that	hold	 additional	 information	 related	 to	 the	query
that	is	not	absolutely	necessary	to	answer	the	query

A	Simple	DNS	Query

dns_query_response.pcapng

DNS	 functions	 in	 a	 query-response	 format.	 A	 client	 wishing	 to	 resolve	 a
DNS	name	to	an	IP	address	sends	a	query	 to	a	DNS	server,	and	the	server
sends	 the	 requested	 information	 in	 its	 response.	 In	 its	 simplest	 form,	 this
process	 takes	 two	 packets,	 as	 can	 be	 seen	 in	 the	 capture	 file
dns_query_response.pcapng.

The	 first	packet,	 shown	 in	Figure	9-11,	 is	a	DNS	query	 sent	 from	the
client	 192.168.0.114	 to	 the	 server	 205.152.37.23	 on	 port	 53,	 which	 is	 the
standard	port	used	by	DNS.



Figure	9-11:	The	DNS	query	packet

When	 you	 begin	 examining	 the	 headers	 in	 this	 packet,	 you’ll	 see	 that
DNS	also	relies	on	UDP	➊.

In	 the	DNS	portion	of	 the	packet,	you	can	see	 that	 smaller	 fields	near
the	beginning	of	the	packet	are	condensed	by	Wireshark	into	a	single	Flags
section.	 Expand	 this	 section,	 and	 you’ll	 see	 that	 the	 message	 is	 indeed	 a
standard	query	➋,	that	it	is	not	truncated,	and	that	recursion	is	desired	(we’ll
cover	 recursion	 shortly).	Only	a	 single	question	 is	 identified,	which	can	be
found	by	expanding	the	Queries	section.	There,	you	can	see	the	query	is	for
the	name	wireshark.org	for	a	host	(type	A)	internet	(IN)	address	➌.	This	packet
is	 basically	 asking,	 “Which	 IP	 address	 is	 associated	 with	 the	wireshark.org
domain?”

The	 response	 to	 this	 request	 is	 in	 packet	 2,	 as	 shown	 in	 Figure	 9-12.
Because	this	packet	has	an	identical	identification	number	➊,	we	know	that	it
contains	the	correct	response	to	the	original	query.

http://wireshark.org
http://wireshark.org


The	Flags	section	confirms	that	this	 is	a	response	and	that	recursion	is
available	 if	 necessary	➋.	 This	 packet	 contains	 only	 one	 question	 and	 one
resource	record	➌,	because	 it	 includes	 the	original	question	 in	conjunction
with	its	answer.	Expanding	the	Answers	section	gives	us	the	response	to	the
query:	 the	 IP	 address	 of	 wireshark.org	 is	 128.121.50.122	 ➍.	 With	 this
information,	 the	 client	 can	 now	 construct	 IP	 packets	 and	 begin
communicating	with	wireshark.org.

Figure	9-12:	The	DNS	response	packet

DNS	Question	Types

The	Type	 fields	 used	 in	DNS	queries	 and	 responses	 indicate	 the	 resource

http://wireshark.org
http://wireshark.org


record	 type	 that	 the	 query	 or	 response	 is	 for.	 Some	of	 the	more	 common
message/resource	record	types	are	listed	in	Table	9-2.	You’ll	be	seeing	these
types	 throughout	normal	 traffic	 and	 in	 this	book.	 (The	 list	 in	Table	9-2	 is
brief	and	by	no	means	exhaustive.	To	review	all	DNS	resource	record	types,
visit	http://www.iana.org/assignments/dns-parameters/.)

Table	9-2:	Common	DNS	Resource	Record	Types

Value Type Description

1 A IPv4	host	address

2 NS Authoritative	name	server

5 CNAME Canonical	name	for	an	alias

15 MX Mail	exchange

16 TXT Text	string

28 AAAA IPv6	host	address

251 IXFR Incremental	zone	transfer

252 AXFR Full	zone	transfer

DNS	Recursion

dns_recursivequery_client.pcapng,	dns_recursivequery_server.pcapng

Due	to	the	hierarchical	nature	of	the	internet’s	DNS	structure,	DNS	servers
must	be	able	to	communicate	with	each	other	in	order	to	answer	the	queries
submitted	by	clients.	While	we	expect	our	internal	DNS	server	to	know	the
name-to-IP	address	mapping	of	our	local	 intranet	server,	we	can’t	expect	it
to	know	the	IP	address	associated	with	Google	or	Dell.

When	 a	 DNS	 server	 needs	 to	 find	 an	 IP	 address,	 it	 queries	 another
DNS	server	on	behalf	of	the	client	making	the	request,	in	effect	acting	like	a
client.	This	process	is	called	recursion.

To	 view	 the	 recursion	 process	 from	 both	 the	 DNS	 client	 and	 server
perspectives,	open	the	file	dns_recursivequery_client.pcapng.	This	file	contains
a	capture	of	a	client’s	DNS	traffic	file	in	two	packets.	The	first	packet	is	the
initial	 query	 sent	 from	 the	 DNS	 client	 172.16.0.8	 to	 its	 DNS	 server

http://www.iana.org/assignments/dns-parameters/


172.16.0.102,	as	shown	in	Figure	9-13.

Figure	9-13:	The	DNS	query	with	the	Recursion	desired	bit	set

When	you	expand	the	DNS	portion	of	this	packet,	you’ll	see	that	this	is
a	standard	query	for	an	A	type	record	for	the	DNS	name	www.nostarch.com	➋.
To	 learn	more	 about	 this	 packet,	 expand	 the	 Flags	 section,	 and	 you’ll	 see
that	recursion	is	desired	➊.

The	 second	 packet	 is	what	we	would	 expect	 to	 see	 in	 response	 to	 the
initial	query,	as	shown	in	Figure	9-14.

http://www.nostarch.com


Figure	9-14:	The	DNS	query	response

This	packet’s	transaction	ID	matches	that	of	our	query	➊,	no	errors	are
listed,	 and	 we	 receive	 the	 A	 type	 resource	 record	 associated	 with
www.nostarch.com	➋.

We	can	see	that	this	query	was	answered	by	recursion	by	listening	to	the
DNS	server’s	traffic	when	the	recursion	is	taking	place,	as	demonstrated	in
the	 file	 dns_recursivequery_server.pcapng.	 This	 file	 shows	 a	 capture	 of	 the
traffic	on	the	local	DNS	server	when	the	query	was	initiated	(Figure	9-15).

http://www.nostarch.com


Figure	9-15:	DNS	recursion	from	the	server’s	perspective

The	first	packet	is	the	same	initial	query	we	saw	in	the	previous	capture
file.	At	this	point,	the	DNS	server	has	received	the	query,	checked	its	local
database,	and	realized	it	doesn’t	know	the	answer	to	the	question	of	which	IP
address	goes	with	the	DNS	name	(www.nostarch.com).	Because	the	packet	was
sent	 with	 the	 Recursion	 desired	 bit	 set,	 the	 DNS	 server	 can	 ask	 another
DNS	server	this	question	in	an	attempt	to	locate	the	answer,	as	you	can	see
in	the	second	packet.

In	 the	 second	packet,	 the	DNS	server	at	172.16.0.102	 transmits	a	new
query	to	4.2.2.1	➊,	which	is	the	server	to	which	it	 is	configured	to	forward
upstream	requests,	as	shown	in	Figure	9-16.	This	query	mirrors	the	original
one,	effectively	turning	the	DNS	server	into	a	client.	We	can	tell	that	this	is
a	new	query	because	the	transaction	ID	number	differs	from	the	transaction
ID	number	in	the	previous	capture	file	➋.

Figure	9-16:	The	recursive	DNS	query

Once	 this	 packet	 is	 received	 by	 server	 4.2.2.1,	 the	 local	 DNS	 server
receives	the	response	shown	in	Figure	9-17.

http://www.nostarch.com


Figure	9-17:	Response	to	the	recursive	DNS	query

Having	 received	 this	 response,	 the	 local	DNS	 server	 can	 transmit	 the
fourth	and	final	packet	to	the	DNS	client	with	the	information	requested.

Although	this	example	shows	only	one	layer	of	recursion,	recursion	can
occur	many	 times	 for	 a	 single	DNS	 request.	Here,	we	 received	 an	 answer
from	the	DNS	server	at	4.2.2.1,	but	that	server	could	have	retransmitted	the
query	 recursively	 to	 another	 server	 in	 order	 to	 find	 the	 answer.	 A	 simple
query	can	travel	all	over	the	world	before	 it	 finally	gets	a	correct	response.
Figure	9-18	illustrates	the	recursive	DNS	query	process.



Figure	9-18:	A	recursive	DNS	query

DNS	Zone	Transfers

dns_axfr.pcapng

A	DNS	zone	is	the	namespace	(or	group	of	DNS	names)	that	a	DNS	server
has	been	delegated	to	manage.	For	instance,	Emma’s	Diner	might	have	one
DNS	server	responsible	for	emmasdiner.com.	In	that	case,	devices	both	inside
and	 outside	 Emma’s	 Diner	 wishing	 to	 resolve	 emmasdiner.com	 to	 an	 IP
address	 would	 need	 to	 contact	 that	 DNS	 server	 as	 the	 authority	 for	 that
zone.	If	Emma’s	Diner	were	to	grow,	it	could	add	a	second	DNS	server	to
handle	 the	 email	 portion	 of	 its	 DNS	 namespace	 only,	 say
mail.emmasdiner.com,	 and	 that	 server	 would	 be	 the	 authority	 for	 that	 mail
subdomain.	 Additional	 DNS	 servers	 might	 be	 added	 for	 subdomains	 as
necessary,	as	shown	in	Figure	9-19.

http://emmasdiner.com
http://emmasdiner.com
http://mail.emmasdiner.com


Figure	9-19:	DNS	zones	divide	responsibility	for	namespaces.

A	 zone	 transfer	 occurs	 when	 zone	 data	 is	 transferred	 between	 two
devices,	typically	out	of	desire	for	redundancy.	For	example,	in	organizations
with	multiple	DNS	servers,	administrators	commonly	configure	a	secondary
DNS	 server	 to	 maintain	 a	 copy	 of	 the	 primary	 server’s	 DNS	 zone
information	in	case	the	primary	server	becomes	unavailable.	There	are	two
types	of	zone	transfers:

Full	 zone	 transfer	 (AXFR)	 	 	These	 types	 of	 transfers	 send	 an	 entire
zone	between	devices.
Incremental	zone	transfer	(IXFR)			These	types	of	transfers	send	only
a	portion	of	the	zone	information.

The	 file	 dns_axfr.pcapng	 contains	 an	 example	 of	 a	 full	 zone	 transfer
between	the	hosts	172.16.16.164	and	172.16.16.139.	When	you	first	look	at
this	 file,	 you	 may	 wonder	 whether	 you’ve	 opened	 the	 right	 one,	 because
rather	 than	UDP	packets,	 you	 see	TCP	packets.	 Although	DNS	 relies	 on
UDP,	it	uses	TCP	for	certain	tasks,	such	as	zone	transfers,	because	TCP	is
more	 reliable	 for	 the	 amount	 of	 data	 being	 transferred.	 The	 first	 three
packets	in	this	capture	file	are	the	TCP	three-way	handshake.

The	 fourth	 packet	 begins	 the	 zone	 transfer	 request	 between



172.16.16.164	 and	 172.16.16.139.	 This	 packet	 doesn’t	 contain	 any	 DNS
information.	It’s	marked	as	a	“TCP	segment	of	a	reassembled	PDU”	because
the	data	sent	in	the	zone	transfer	request	packet	was	sent	in	multiple	packets.
Packets	4	and	6	contain	 the	packet’s	data.	Packet	5	 is	 the	acknowledgment
that	 packet	 4	 was	 received.	 These	 packets	 are	 displayed	 in	 this	 manner
because	 of	 the	 way	Wireshark	 parses	 and	 displays	TCP	 packets	 for	 easier
readability.	 For	 our	 purposes,	 we	 can	 reference	 packet	 6	 as	 the	 complete
DNS	zone	transfer	request,	as	shown	in	Figure	9-20.

Figure	9-20:	DNS	full	zone	transfer	request

The	 zone	 transfer	 request	 is	 a	 standard	 query	 ➊,	 but	 instead	 of
requesting	a	single	record	type,	it	requests	the	AXFR	type	➋,	meaning	that	it
wishes	to	receive	the	entire	DNS	zone	from	the	server.	The	server	responds
with	the	zone	records	in	packet	7,	as	shown	in	Figure	9-21.	As	you	can	see,
the	zone	transfer	contains	quite	a	bit	of	data,	and	this	is	one	of	the	simpler
examples!	With	 the	 zone	 transfer	 complete,	 the	 capture	 file	 ends	with	 the
TCP	connection	teardown	process.

WARNING

The	data	contained	in	a	zone	transfer	can	be	very	dangerous	in	the	wrong
hands.	For	example,	by	enumerating	a	single	DNS	server,	you	can	map	a



network’s	entire	infrastructure.

Figure	9-21:	The	DNS	full	zone	transfer	occurring

Hypertext	Transfer	Protocol	(HTTP)
The	Hypertext	Transfer	Protocol	 is	 the	delivery	mechanism	of	 the	World
Wide	Web,	 allowing	web	browsers	 to	 connect	 to	web	 servers	 to	 view	web
pages.	 In	 most	 organizations,	 HTTP	 represents,	 by	 far,	 the	 highest
percentage	of	traffic	seen	going	across	the	wire.	Every	time	you	do	a	Google
search,	 send	a	 tweet,	or	check	University	of	Kentucky	basketball	 scores	on
http://www.espn.com/,	you’re	using	HTTP.

We	won’t	 look	at	 the	packet	 structures	 for	an	HTTP	transfer	because
there	are	so	many	different	implementations	of	the	HTTP	protocol	that	the
structure	may	 vary	wildly.	 Because	 of	 this	 variance,	 that	 exercise	 is	 left	 to
you.	 Here,	 we’ll	 look	 at	 some	 practical	 applications	 of	 HTTP	 such	 as
retrieving	and	posting	content.

http://www.espn.com/


Browsing	with	HTTP

http_google.pcapng

HTTP	is	most	commonly	used	to	browse	web	pages	on	a	web	server	using	a
browser.	The	capture	 file	http_google.pcapng	 shows	such	an	HTTP	transfer,
using	TCP	 as	 the	 transport	 layer	 protocol.	 Communication	 begins	 with	 a
three-way	handshake	between	the	client	172.16.16.128	and	the	Google	web
server	74.125.95.104.

Once	 communication	 is	 established,	 the	 first	 packet	 is	 marked	 as	 an
HTTP	packet	from	the	client	to	the	server,	as	shown	in	Figure	9-22.

Figure	9-22:	The	initial	HTTP	GET	request	packet

The	HTTP	packet	is	delivered	over	TCP	to	the	server’s	port	80	➊,	the
standard	port	for	HTTP	communication	(several	other	ports	are	often	used
as	well,	such	as	8080	and	8888).

HTTP	packets	are	identified	by	one	of	eight	request	methods	as	defined
in	HTTP	specification	version	1.1	(see	http://www.iana.org/assignments/http-
methods/http-methods.xhtml),	 which	 indicate	 the	 action	 the	 packet’s
transmitter	 will	 perform	 on	 the	 receiver.	 As	 shown	 in	 Figure	 9-22,	 this
packet	 identifies	 its	method	 as	 GET,	 its	 request	Uniform	Resource	 Indicator

http://www.iana.org/assignments/http-methods/http-methods.xhtml


(URI)	 as	 /,	 and	 the	 request	 version	 as	 HTTP/1.1	➋.	This	 information	 tells	us
that	the	client	is	sending	a	request	to	download	(GET)	the	root	web	directory
(/)	of	the	web	server	using	version	1.1	of	HTTP.

Next,	 the	 host	 sends	 information	 about	 itself	 to	 the	 web	 server.	 This
information	 includes	 things	 such	 as	 the	 browser	 (User-Agent)	 being	 used,
languages	 accepted	 by	 the	 browser	 (Accept-Languages),	 and	 cookie
information	 (at	 the	 bottom	 of	 the	 capture).	 The	 server	 can	 use	 this
information	 to	 determine	 which	 data	 to	 return	 to	 the	 client	 in	 order	 to
ensure	compatibility.

When	the	server	receives	the	HTTP	GET	request	in	packet	4,	it	responds
with	 a	TCP	ACK,	 acknowledging	 the	 packet,	 and	 begins	 transmitting	 the
requested	data	from	packets	6	to	11.	HTTP	is	used	only	to	issue	application-
layer	 commands	 between	 the	 client	 and	 server.	Why	 do	 all	 these	 HTTP
packets	 show	 up	 as	 TCP	 under	 the	 protocol	 heading	 in	 the	 packet	 list?
When	data	 transfer	 begins,	 the	Wireshark	 packet	 list	window	will	 identify
those	packets	 as	TCP	 instead	of	HTTP	 since	no	HTTP	 request/response
headers	are	present	in	those	individual	packets.	Thus,	where	data	transfer	is
occurring,	 you	 see	 TCP	 instead	 of	 HTTP	 in	 the	 Protocol	 column.
Nonetheless,	this	is	still	part	of	the	HTTP	communication	process.

Data	 is	 sent	 from	 the	 server	 in	 packets	 6	 and	 7,	 an	 acknowledgment
from	the	client	in	packet	8,	two	more	data	packets	in	packets	9	and	10,	and
another	acknowledgment	in	packet	11,	as	shown	in	Figure	9-23.	All	of	these
packets	 are	 shown	 in	Wireshark	 as	TCP	 segments,	 rather	 than	 as	HTTP
packets,	although	HTTP	is	still	responsible	for	their	transmission.

Figure	9-23:	TCP	transmitting	data	between	the	client	browser	and	web	server

Once	the	data	is	transferred,	Wireshark	reassembles	the	data	stream	for
viewing,	as	shown	in	Figure	9-24.



Figure	9-24:	Final	HTTP	packet	with	response	code	200

NOTE

In	many	instances,	you	won’t	be	able	to	see	readable	HTML	data	when
browsing	through	the	packet	list	because	that	data	is	gzip	compressed	to
increase	bandwidth	efficiency.	This	is	signified	by	the	Content-Encoding	field
in	the	HTTP	response	from	the	web	server.	It’s	only	when	you	view	the	full
stream	that	the	data	is	decoded	and	easily	readable.

HTTP	 uses	 a	 number	 of	 predefined	 response	 codes	 to	 indicate	 the
results	of	a	request	method.	In	this	example,	we	see	a	packet	with	status	code
200	➊,	which	indicates	a	successful	request	method.	The	packet	also	includes
a	 timestamp	 and	 some	 additional	 information	 about	 the	 encoding	 of	 the
content	 and	 configuration	 parameters	 of	 the	 web	 server.	When	 the	 client
receives	this	packet,	the	transaction	is	complete.

Posting	Data	with	HTTP

http_post.pcapng



Now	 that	we	 have	 looked	 at	 the	 process	 of	 downloading	 data	 from	 a	web
server,	 let’s	 turn	 our	 attention	 to	 uploading	 data.	 The	 file	 http_post.pcapng
contains	a	very	simple	example	of	an	upload:	a	user	posting	a	comment	to	a
web-site.	 After	 the	 initial	 three-way	 handshake,	 the	 client	 (172.16.16.128)
sends	 an	 HTTP	 packet	 to	 the	 web	 server	 (69.163.176.56),	 as	 shown	 in
Figure	9-25.

Figure	9-25:	The	HTTP	POST	packet

This	packet	uses	 the	POST	method	➊	 to	upload	data	 to	a	web	server	 for
processing.	The	POST	method	used	here	specifies	the	URI	/wp-comments-post.php
➋	and	the	HTTP	version	of	HTTP/1.1.	To	see	the	contents	of	the	data	posted,
expand	the	HTML	Form	URL	Encoded	portion	of	the	packet	➌.

Once	 the	 data	 is	 transmitted	 in	 this	 POST,	 an	 ACK	 packet	 is	 sent.	 As



shown	 in	Figure	 9-26,	 the	 server	 responds	with	 packet	 6,	 transmitting	 the
response	code	302	➊,	which	means	“found.”

Figure	9-26:	HTTP	response	302	is	used	to	redirect.

The	302	response	code	is	a	common	means	of	redirection	in	the	HTTP
world.	The	Location	 field	 in	 this	packet	 specifies	where	 the	 client	 is	 to	be
directed	➋.	In	this	case,	that	location	is	on	the	originating	web	page	where
the	comment	was	posted.	The	client	performs	a	new	GET	request	to	retrieve
content	 at	 the	 new	 location,	 which	 it	 sends	 over	 the	 next	 several	 packets.
Finally,	the	server	transmits	status	code	200,	and	the	communication	ends.

Simple	Mail	Transfer	Protocol	(SMTP)
If	 web	 browsing	 is	 the	 most	 common	 activity	 a	 user	 will	 participate	 in,
sending	 and	 receiving	 email	 is	 probably	 in	 second	 place.	The	Simple	Mail
Transfer	Protocol	(SMTP),	used	by	platforms	such	as	Microsoft	Exchange	and
Postfix,	is	the	standard	for	sending	email.

As	with	HTTP,	the	structure	of	an	SMTP	packet	can	vary	based	on	the
implementation	and	the	set	of	features	supported	by	the	client	and	server.	In



this	 section,	 we’ll	 review	 some	 of	 the	 basic	 functionality	 of	 SMTP	 by
examining	what	sending	email	looks	like	at	the	packet	level.

Sending	and	Receiving	Email

The	architecture	supporting	email	is	similar	to	the	US	Postal	Service.	When
you	write	a	letter,	you	put	it	in	your	mailbox,	a	postal	worker	picks	it	up,	and
it’s	 transported	 to	 a	 post	 office	where	 it’s	 sorted.	From	 there,	 the	 letter	 is
either	 delivered	 to	 another	 mailbox	 serviced	 by	 that	 same	 post	 office	 or
transported	 to	 another	 post	 office	 that	 is	 responsible	 for	 delivering	 it.	 A
letter	 may	 traverse	 multiple	 post	 offices	 or	 even	 “hub”	 offices	 designed
exclusively	 to	distribute	 to	post	offices	 in	 specific	geographic	 regions.	This
flow	of	information	is	illustrated	in	Figure	9-27.

Figure	9-27:	Sending	a	letter	via	the	postal	service

Delivering	email	works	in	a	very	similar	manner,	but	the	terminology	is



a	bit	different.	At	the	individual	user	 level,	 the	physical	mailbox	is	replaced
by	 a	 digital	 mailbox	 that	 is	 responsible	 for	 storing	 and	 facilitating	 the
sending	and	receiving	of	your	email.	You	access	this	mailbox	with	a	mail	user
agent	 (MUA),	 which	 is	 an	 email	 client	 like	Microsoft	 Outlook	 or	Mozilla
Thunderbird.

When	you	send	a	message,	 it’s	 sent	 from	your	MUA	to	a	mail	 transfer
agent	(MTA).	The	MTA	is	often	referred	to	as	the	mail	server,	with	popular
mail	 server	 applications	 being	Microsoft	Exchange	 or	 Postfix.	 If	 the	 email
being	 sent	 is	 destined	 for	 the	 same	 domain	 it	 came	 from,	 the	 MTA	 can
associate	it	with	the	recipient	mailbox	without	any	further	communication.	If
the	email	is	being	sent	to	another	domain,	the	MTA	must	use	DNS	to	find
the	location	address	of	the	recipient	mail	server,	then	transmit	the	message
to	 it.	 It’s	 worth	 noting	 that	 the	 mail	 server	 is	 often	 made	 up	 of	 other
components	like	a	Mail	Delivery	Agent	(MDA)	or	a	Mail	Submission	Agent
(MSA),	but	from	the	network	standpoint,	we’ll	usually	only	be	interested	in
the	 concept	 of	 a	 client	 and	 a	 server.	 This	 basic	 overview	 is	 illustrated	 in
Figure	9-28.

Figure	9-28:	Sending	an	email	via	SMTP

For	simplicity’s	sake,	we’ll	refer	to	the	MUA	as	the	email	client	and	the
MTA	as	the	email	server.

Tracking	an	Email	Message



With	a	basic	understanding	of	how	email	messages	are	transmitted,	we	can
begin	 to	 look	 at	 packets	 that	 represent	 this	 process.	 Let’s	 start	 with	 the
scenario	outlined	in	Figure	9-29.

Figure	9-29:	Tracking	an	email	from	sender	to	recipient

There	are	three	steps	in	this	scenario:

1.	 A	user	sends	a	message	from	their	workstation	(172.16.16.225).	The
email	client	transmits	the	message	via	SMTP	to	the	local	email	server
(172.16.16.221	/	skynet.local	domain).

2.	 The	local	email	server	receives	the	message	and	transmits	it	to	a	remote
email	server	(172.16.16.231	/	cyberdyne.local	domain)	via	SMTP.

3.	 The	remote	email	server	receives	the	message	and	associates	it	with	the
appropriate	mailbox.	The	email	client	on	a	user’s	workstation
(172.16.16.235)	retrieves	this	message	using	the	IMAP	protocol.

Step	1:	Client	to	Local	Server

mail_sender_client_1.pcapng

We’ll	 begin	 stepping	 through	 this	 process	 by	 reviewing	 step	 1,	 which	 is
represented	 by	 mail_sender_client_1.pcapng.	 The	 file	 begins	 when	 the	 user
clicks	 the	 Send	button	 in	 their	 email	 client,	 initiating	 the	TCP	handshake
between	their	workstation	and	the	local	email	server	in	packets	1	through	3.

NOTE

You	can	ignore	any	ETHERNET FRAME CHECK SEQUENCE INCORRECT	errors	observed
while	analyzing	the	packet	captures	in	this	section.	They	are	an	artifact	of	the
lab	environment	in	which	these	were	created.



Once	a	connection	is	established,	SMTP	takes	over	and	begins	the	work
of	 transmitting	 the	 user’s	 message	 to	 the	 server.	 You	 could	 examine	 each
SMTP	 request	 and	 response	 individually	 by	 scrolling	 through	 each	 packet
and	viewing	the	SMTP	section	of	the	Packet	Details	window,	but	there	is	an
easier	way.	Since	SMTP	is	a	simple	transactional	protocol	and	our	example
is	in	clear	text,	you	can	follow	the	TCP	stream	to	view	the	entire	transaction
in	 one	 window.	 Do	 this	 by	 right-clicking	 any	 packet	 in	 the	 capture	 and
selecting	Follow	▶	TCP	Stream.	The	resulting	stream	is	shown	in	Figure
9-30.

With	a	connection	established,	 the	email	 server	 sends	a	 service	banner
to	the	client	in	packet	4	to	indicate	that	it	is	ready	to	receive	a	command.	In
this	case,	it	identifies	itself	as	a	Postfix	server	running	on	the	Ubuntu	Linux
operating	system	➊.	It	also	identifies	that	it	is	capable	of	receiving	Extended
SMTP	 (ESMTP)	 commands.	 ESMTP	 is	 an	 extension	 to	 the	 SMTP
specification	 that	 allows	 for	 additional	 commands	 to	 be	 used	 during	 mail
transmission.

The	email	client	 responds	by	 issuing	 the	EHLO	 command	 in	packet	5	➋.
EHLO	is	the	“Hello”	command	used	to	identify	the	sending	host	when	ESMTP
is	 supported.	 If	 ESMTP	 is	 not	 available,	 the	 client	 will	 revert	 to	 the	 HELO
command	to	identify	itself.	In	this	example,	the	sender	is	identified	by	its	IP
address,	although	a	DNS	name	can	be	used	as	well.

In	packet	7,	the	server	responds	with	a	 list	of	 items	that	 include	things
like	 VRFY,	 STARTTLS,	 and	 SIZE 10240000	➌.	 This	 list,	 which	 reflects	 commands
supported	 by	 the	 SMTP	 server,	 is	 provided	 so	 that	 the	 client	 knows	what
commands	it	is	allowed	to	use	when	transmitting	the	message.	This	feature
negotiation	 occurs	 at	 the	 beginning	 of	 every	 SMTP	 transaction	 before	 a
message	 is	 sent.	 The	 transmission	 of	 the	 message	 begins	 at	 packet	 8	 and
makes	up	most	of	the	remainder	of	this	capture.



Figure	9-30:	Viewing	the	TCP	stream	from	the	email	client	to	the	local	server

SMTP	is	governed	by	simple	commands	and	parameter	values	sent	from
the	client,	followed	by	a	response	code	from	the	server.	This	is	very	similar
to	 protocols	 like	HTTP	and	TELNET	and	 is	 designed	 for	 simplicity.	An
example	request	and	reply	can	be	seen	in	packets	8	and	9,	where	the	client
issues	the	MAIL	command	with	the	parameter	FROM:<sanders@skynet.local> SIZE=556



➍,	 and	 the	 server	responds	with	response	code	250	 (Requested	mail	action
okay,	completed)	and	the	2.1.0 Ok	parameter.	Here,	 the	client	 identifies	 the
sender’s	email	address	and	the	size	of	the	message,	and	the	server	responds
saying	 that	 this	 data	 was	 received	 and	 is	 acceptable.	 A	 similar	 transaction
happens	 again	 in	 packets	 10	 and	 11,	 where	 the	 client	 issues	 the	 RCPT

command	 with	 the	 parameter	 TO:<sanders@cyberdyne.local>	➎,	 and	 the	 server
responds	with	another	250 2.1.5 Ok	code.

NOTE

If	you’d	like	to	review	all	the	available	SMTP	commands	and	parameters,	you
can	do	so	here:	http://www.iana.org/assignments/mail-parameters/mail-
parameters.xhtml.	If	you’d	like	to	review	the	available	response	codes,	that
can	be	done	here:	https://www.iana.org/assignments/smtp-enhanced-
status-codes/smtp-enhanced-status-codes.xml.

All	 that	 is	 left	 is	 to	transmit	the	message	itself.	The	client	 initiates	this
process	in	packet	12	by	issuing	the	DATA	command.	The	server	responds	with
code	354	along	with	a	message	➏,	which	indicates	that	the	server	has	created
a	buffer	for	the	message	and	tells	the	client	to	begin	transmitting.	The	line
containing	 the	 code	 354	 tells	 the	 client	 to	 send	 a	 dot	 (<CR><LF>.<CR><LF>)	 to
mark	 the	end	of	 the	 transmission.	The	message	 is	 transmitted	 in	plaintext,
and	a	response	code	indicating	successful	transmission	is	sent.	You’ll	notice
the	 inclusion	 of	 some	 additional	 information	 with	 the	 message	 text,
including	 the	 date,	 the	 content	 type	 and	 encoding,	 and	 the	 user	 agent
associated	with	 the	 transmission.	This	 tells	you	 that	 the	end	user	who	sent
this	message	was	using	Mozilla	Thunderbird	➐.

With	transmission	complete,	the	SMTP	connection	is	terminated	by	the
email	client	by	 issuing	 the	QUIT	 command	with	no	parameters	 in	packet	18.
The	server	responds	in	packet	19	with	the	response	code	221	(<domain>	ser-
vice	closing	transmission	channel)	and	the	2.0.0 Bye	parameter	➑.	The	TCP
connection	is	torn	down	gracefully	in	packets	20–23.

Step	2:	Local	Server	to	Remote	Server

mail_sender_server_2.pcapng

http://www.iana.org/assignments/mail-parameters/mail-parameters.xhtml
https://www.iana.org/assignments/smtp-enhanced-status-codes/smtp-enhanced-status-codes.xml


Next	we’ll	examine	the	same	scenario	from	the	perspective	of	the	local	email
server	 responsible	 for	 the	 skynet.local	 domain;	 its	 address	 is	 172.16.16.221.
This	capture	can	be	found	in	the	file	mail_sender_server_2.pcapng,	which	was
taken	directly	from	the	email	server.	As	you	might	expect,	the	first	20	or	so
packets	 mirror	 the	 capture	 in	 step	 1,	 because	 they	 are	 the	 same	 packets
captured	from	another	source.

If	 the	 sent	message	was	destined	 for	another	mailbox	 in	 the	 skynet.local
domain,	we	wouldn’t	see	any	more	SMTP	traffic;	instead,	we	would	see	the
retrieval	 of	 the	 message	 from	 an	 email	 client	 with	 the	 POP3	 or	 IMAP
protocol.	 However,	 since	 this	 message	 is	 destined	 for	 the	 cyberdyne.local
domain,	 the	 local	 SMTP	 server	must	 transmit	 the	message	 to	 the	 remote
SMTP	server	responsible	for	that	domain.	This	process	begins	in	packet	22
with	 a	 TCP	 handshake	 between	 the	 local	 server	 172.16.16.221	 and	 the
remote	mail	server	172.16.16.231.

NOTE

In	a	real-world	scenario,	an	email	server	locates	another	server	by	using	a
special	DNS	record	type	known	as	a	mail	exchange	(MX)	record.	Since	this
scenario	was	created	in	a	lab	and	the	IP	address	of	the	remote	email	server	was
preconfigured	on	the	local	server,	we	won’t	see	that	traffic	here.	If	you’re
troubleshooting	email	delivery,	you	should	consider	the	potential	for	DNS
issues	along	with	email-specific	protocol	issues.

With	 a	 connection	 established,	 we	 can	 see	 in	 the	 Packet	 List	 window
that	 SMTP	 is	 used	 to	 deliver	 the	message	 to	 the	 remote	 server.	 You	 can
better	 view	 this	 conversation	 by	 following	 the	 TCP	 stream	 for	 the
transaction.	 It	 is	 shown	 in	 Figure	 9-31.	 If	 you	 need	 help	 isolating	 this
connection,	apply	the	filter	tcp.stream == 1	in	the	filter	bar.



Figure	9-31:	Viewing	the	TCP	stream	from	the	local	email	server	to	the	remote	email	server

This	 transaction	 is	 nearly	 identical	 to	 the	 one	 in	 Figure	 9-30.
Essentially,	 the	 message	 is	 just	 being	 transmitted	 between	 servers.	 The
remote	server	 identifies	 itself	as	mail02	➊,	 the	 local	 server	 identifies	 itself	as
mail01	 ➋,	 a	 list	 of	 support	 commands	 is	 shared	 ➌,	 and	 the	 message	 is



transferred	 in	 its	 entirety	 with	 a	 bit	 of	 additional	 data	 from	 the	 previous
transaction	prepended	to	the	message	above	the	To	line	➍.	This	all	occurs
between	 packets	 27	 and	 35,	 with	 a	 TCP	 teardown	 closing	 the
communication	channel.

The	server	ultimately	doesn’t	care	whether	the	message	is	coming	from
an	 email	 client	 or	 another	 SMTP	 server,	 so	 all	 the	 same	 rules	 and
procedures	apply	(barring	any	type	of	access	control	restrictions).	In	the	real
world,	a	local	email	server	and	a	remote	email	server	might	not	support	the
same	 feature	 set	or	might	be	based	on	entirely	different	platforms.	This	 is
why	the	initial	SMTP	communication	is	so	important;	it	allows	the	recipient
server	 to	 transmit	 its	 supported	 feature	set	 to	 the	sender.	When	an	SMTP
client	or	server	is	aware	of	the	supported	features	of	the	recipient	server,	the
SMTP	 commands	 can	 be	 adjusted	 so	 that	 the	message	 can	 be	 transmitted
effectively.	This	 capability	 allows	 SMTP	 to	 be	widely	 usable	 between	 any
number	of	client	and	server	technologies,	and	this	is	why	you	don’t	have	to
know	much	about	the	network	infrastructure	of	the	recipient	when	sending
an	email.

Step	3:	Remote	Server	to	Remote	Client

mail_receiver_server_3.pcapng

At	 this	 point,	 our	 message	 has	 reached	 the	 remote	 server	 responsible	 for
delivering	emails	to	mailboxes	in	the	cyberdyne.local	domain.	We’ll	now	look
at	 a	 packet	 capture	 taken	 from	 the	perspective	of	 the	 remote	 server,	mail_
receiver_server_3.pcapng,	shown	in	Figure	9-32.



Figure	9-32:	Viewing	the	TCP	stream	from	the	local	email	server	to	the	remote	email	server

Once	again,	the	first	15	packets	in	this	capture	look	very	familiar,	as	they
are	a	representation	of	the	same	message	being	exchanged,	with	the	source
address	 representing	 the	 local	 email	 server	➊	 and	 the	 destination	 address
representing	 the	 remote	 email	 server	➋.	Once	 this	 sequence	 is	 completed,



the	SMTP	server	can	associate	the	message	with	the	appropriate	mailbox	so
that	the	intended	recipient	can	retrieve	it	via	their	email	client.

As	mentioned	earlier,	SMTP	is	primarily	used	for	sending	email	and	is
by	far	the	most	common	protocol	for	that	purpose.	Retrieving	email	from	a
mailbox	on	a	server	is	a	bit	more	open-ended,	and	because	of	different	needs
arising	in	that	space,	there	are	several	protocols	that	are	designed	to	support
this	task.	The	most	prevalent	are	Post	Office	Protocol	version	3	(POP3)	and
Internet	Message	Access	Protocol	(IMAP).	In	our	example,	the	remote	client
retrieves	messages	from	the	email	server	using	IMAP	in	packets	16–34.

We	don’t	cover	IMAP	in	this	book,	but	in	this	example,	it	wouldn’t	do
you	a	ton	of	good	even	if	we	did	because	the	communication	is	encrypted.	If
you	look	at	packet	21,	you’ll	see	the	client	(172.16.16.235)	send	the	STARTTLS
command	 to	 the	 email	 server	 (172.16.16.231)	 in	 packet	 21	 ➊,	 shown	 in
Figure	9-33.

Figure	9-33:	The	STARTTLS	command	indicates	that	the	IMAP	traffic	will	be	encrypted.

This	command	informs	the	server	that	the	client	would	like	to	retrieve
messages	 securely	 using	 TLS	 encryption.	 A	 secure	 channel	 is	 negotiated
between	 each	 endpoint	 in	 packets	 24–27	➋,	 and	 the	 message	 is	 retrieved
securely	 via	 the	 TLS	 (Transport	 Layer	 Security)	 protocol	 in	 the	 remaining
packets	➌.	 If	 you	click	any	of	 these	packets	 to	view	 the	data	or	attempt	 to
follow	 the	 TCP	 stream	 (Figure	 9-34),	 you’ll	 find	 that	 the	 contents	 are
unreadable,	 protecting	 the	 email	 from	 being	 intercepted	 by	 someone	who
might	be	attempting	to	hijack	or	sniff	traffic	maliciously.

With	those	final	packets	received,	the	process	of	sending	a	message	from
a	user	in	one	domain	to	a	user	in	another	domain	is	completed.



Figure	9-34:	The	IMAP	traffic	is	encrypted	as	the	client	downloads	the	message.

Sending	Attachments	via	SMTP

mail_sender	_attachment.pcapng

SMTP	was	never	intended	to	be	a	mechanism	for	transmitting	files,	but	the
ease	 of	 emailing	 a	 file	 means	 that	 it	 has	 become	 the	 primary	 sharing
mechanism	for	many.	Let’s	walk	through	a	quick	example	of	what	sending	a
file	looks	like	at	the	packet	level	using	SMTP.



In	the	packet	capture	mail_sender_attachment.pcapng,	a	user	is	sending	an
email	message	from	their	client	(172.16.16.225)	to	another	user	on	the	same
network	 via	 a	 local	 SMTP	 mail	 server	 (172.16.16.221).	 The	 message
contains	a	bit	of	text	and	includes	an	image	file	attachment.

Sending	an	attachment	via	SMTP	is	not	too	different	from	sending	text.
It’s	 all	 just	 data	 to	 the	 server,	 and	 although	 some	 special	 encoding	 usually
takes	 place,	we	 still	 rely	 on	 the	 DATA	 command	 to	 get	 things	where	 they’re
going.	 To	 see	 this	 in	 action,	 open	 the	 capture	 file	 and	 follow	 the	 TCP
stream	for	the	given	SMTP	transaction.	This	stream	is	pictured	in	Figure	9-
35.



Figure	9-35:	A	user	sending	an	attachment	via	SMTP

This	 example	 begins	 like	 the	 previous	 scenarios	 with	 service
identification	 and	 an	 exchange	 of	 supported	 protocols.	When	 the	 client	 is
ready	 to	 transmit	 the	message,	 it	 does	 so	 by	 providing	 the	 From	 and	To
addresses,	 and	 sending	 the	 DATA	 command	 instructs	 the	 server	 to	open	up	a
buffer	to	receive	the	information.	This	is	where	things	get	a	little	different.

In	 the	previous	 example,	 the	 client	 transmitted	 the	 text	directly	 to	 the
server,	 and	 that	was	 it.	 In	 this	 example,	 the	 client	must	 send	 the	 plaintext
message,	as	well	as	the	binary	data	associated	with	the	image	attachment.	To
make	 this	 happen,	 it	 identifies	 its	 Content-Type	 as	 multipart/mixed,	 with	 a
boundary	 of	 ------------050407080301000500070000	➊.	 This	 tells	 the	 server	 that
multiple	 types	 of	 data	 are	 being	 transmitted,	 each	 with	 their	 own	 unique
MIME	type	and	encoding,	and	that	each	type	of	data	will	be	separated	with
the	boundary	value	 specified.	Therefore,	when	another	mail	 client	 receives
this	data,	it	will	know	how	to	interpret	the	data	based	on	the	boundaries	and
the	unique	MIME	type	and	encoding	specified	in	each	chunk.

In	our	example,	we	have	 two	unique	parts	of	 this	message.	The	first	 is
the	mail	text	itself,	which	is	identified	by	the	content	type	text/plain	➋.	After
that,	we	see	a	boundary	marker	and	the	start	of	a	new	part	of	the	message	➌.
This	 part	 contains	 the	 image	 file	 and	 is	 identified	 by	 the	 content	 type
image/jpeg	➍.	It’s	also	worth	noting	that	the	Content-Transfer-Encoding	value	is	set
to	 base64	➎,	meaning	 that	 the	 data	must	 be	 converted	 from	 base	 64	 to	 be
parsed.	The	remainder	of	 the	 transmission	 includes	 the	encoded	 image	 file
➏.



Whatever	 you	 do,	 don’t	 get	 this	 encoding	 confused	 with	 a	 security
feature.	Base	64	encoding	is	almost	instantly	reversible,	and	any	attacker	who
intercepts	 this	 communication	 would	 be	 able	 to	 retrieve	 the	 image	 file
without	much	effort.	 If	 you	are	 interested	 in	 carving	 this	 image	 file	out	of
the	packet	capture	yourself,	there	is	a	similar	scenario	in	which	we	carve	an
image	 from	 an	 HTTP-based	 file	 transfer	 in	 the	 Remote-Access	 Trojan
section	of	Chapter	12.	Once	you’ve	 read	 that,	 flip	back	 to	 this	 capture	 file
and	see	if	you	can	find	out	who	the	user’s	mysterious	new	coworker	is.

Final	Thoughts
This	chapter	has	introduced	the	most	common	protocols	you	will	encounter
when	 examining	 traffic	 at	 the	 application	 layer.	 In	 the	 following	 chapters,
we’ll	 examine	new	protocols	 and	additional	 features	of	 the	protocols	we’ve
covered	here	as	we	explore	a	wide	range	of	real-world	scenarios.

To	learn	more	about	individual	protocols,	read	their	associated	RFCs	or
have	a	look	at	The	TCP/IP	Guide	by	Charles	M.	Kozierok	(No	Starch	Press,
2005).	Also,	see	the	list	of	resources	in	Appendix	A.



10
BASIC	REAL-WORLD	SCENARIOS

Beginning	with	this	chapter,	we’ll	dig	into	the	meat	of
packet	 analysis	 as	 we	 use	Wireshark	 to	 analyze	 real-
world	 network	 problems.	 I’ll	 introduce	 a	 series	 of
problem	 scenarios	 by	 describing	 the	 context	 of	 the
problem	 and	 providing	 the	 information	 that	 was
available	 to	 the	 analyst	 at	 the	 time.	 Having	 laid	 the
groundwork,	 we’ll	 turn	 to	 analysis	 as	 I	 describe	 the	 method	 used	 to
capture	the	appropriate	packets	and	step	you	through	the	process	of	working
toward	 a	 diagnosis.	 Once	 analysis	 is	 complete,	 I’ll	 point	 toward	 potential
solutions	and	give	an	overview	of	the	lessons	learned.

Throughout,	 remember	 that	 analysis	 is	 a	 very	 dynamic	 process.	Thus,
the	methods	 I	use	 to	analyze	each	 scenario	may	not	be	 the	 same	ones	 that
you	would	use.	Everyone	approaches	problem	solving	and	reasoning	through
their	own	 lens.	The	most	 important	 thing	 is	 that	 the	 result	of	 the	 analysis
solves	a	problem,	but	even	when	it	doesn’t,	it’s	critical	to	learn	from	failures
as	 well.	 Experience	 is	 the	 thing	we	 get	 when	we	 don’t	 get	 what	we	want,
after	all.

In	 addition,	 most	 problems	 discussed	 in	 this	 chapter	 can	 probably	 be



solved	 with	 methods	 that	 don’t	 necessarily	 involve	 a	 packet	 sniffer,	 but
what’s	the	fun	in	that?	When	I	was	first	 learning	how	to	analyze	packets,	I
found	it	helpful	to	examine	typical	problems	in	atypical	ways	by	using	packet
analysis	techniques,	which	is	why	I	present	these	scenarios	to	you.

Missing	Web	Content

http_espn_fail.pcapng

In	the	first	scenario	we’ll	look	at,	our	user	is	Packet	Pete,	a	college	basketball
fan	who	doesn’t	keep	 late	hours	and	usually	misses	 the	West	Coast	games.
The	first	thing	he	does	when	he	sits	down	at	his	workstation	every	morning
is	visit	http://www.espn.com/	for	the	previous	night’s	final	scores.	When	Pete
browses	to	ESPN	this	morning,	he	finds	that	the	page	is	taking	a	long	time
to	load,	and	when	it	finally	does,	most	of	the	images	and	content	are	missing
(Figure	10-1).	Let’s	help	Pete	diagnose	this	issue.

Figure	10-1:	ESPN	is	failing	to	load	properly.

http://www.espn.com/


Tapping	into	the	Wire

This	issue	is	isolated	to	Pete’s	workstation	and	is	not	affecting	any	others,	so
we’ll	start	by	capturing	packets	directly	from	there.	To	do	this,	we’ll	install
Wireshark	and	capture	packets	while	browsing	to	the	ESPN	website.	Those
packets	are	found	in	the	file	http_espn_fail.pcapng.

Analysis

We	know	Pete’s	issue	is	that	he’s	unable	to	view	a	website	he	is	browsing	to,
so	we’re	primarily	going	 to	be	 looking	at	 the	HTTP	protocol.	 If	you	read
the	previous	chapter,	you	should	have	a	basic	understanding	of	what	HTTP
traffic	between	a	client	and	server	looks	like.	A	good	place	to	start	looking	is
at	the	HTTP	requests	being	made	to	the	remote	server.	You	can	do	this	by
applying	 a	 filter	 for	 GET	 requests	 (using	 http.request.method == "GET"),
but	 this	 can	 also	 be	 done	 by	 simply	 selecting	 Statistics	 ▶	 HTTP	 ▶
Requests	from	the	main	drop-down	menu	(Figure	10-2).

Figure	10-2:	Viewing	HTTP	requests	to	ESPN



From	this	overview,	 it	appears	 the	capture	 is	 limited	 to	seven	different
HTTP	 requests,	 and	 they	 all	 look	 like	 they	 are	 associated	with	 the	ESPN
website.	Each	request	contains	the	string	espn	within	the	domain	name,	with
the	exception	of	cdn.optimizely.com,	which	is	a	content	delivery	network	(CDN)
used	 to	 deliver	 advertising	 to	 a	 multitude	 of	 sites.	 It’s	 common	 to	 see
requests	 to	 various	 CDNs	 when	 browsing	 to	 websites	 that	 host
advertisements	or	other	external	content.

With	no	 clear	 leads	 to	 follow,	 the	 next	 step	 is	 to	 look	 at	 the	 protocol
hierarchy	of	the	capture	file	by	selecting	Statistics	▶	Protocol	Hierarchy.
This	will	allow	us	 to	spot	unexpected	protocols	or	peculiar	distributions	of
traffic	per	protocol	(Figure	10-3).	Keep	in	mind	that	the	protocol	hierarchy
screen	 is	 based	on	 the	 currently	 applied	display	 filter.	Be	 sure	 to	 clear	 the
previously	applied	filter	to	get	the	expected	results	based	on	the	entire	packet
capture.

Figure	10-3:	Reviewing	the	protocol	hierarchy	of	the	browsing	session

The	protocol	hierarchy	isn’t	too	complex,	and	we	can	quickly	decipher
that	 there	 are	 only	 two	 application-layer	 protocols	 at	 work:	 HTTP	 and
DNS.	As	you	learned	in	Chapter	9,	DNS	is	used	to	translate	domain	names
to	IP	addresses.	So,	when	you	browse	to	a	site	like	http://www.espn.com/,	your
system	may	 need	 to	 send	 out	 a	DNS	 query	 to	 find	 the	 IP	 address	 of	 the
remote	web	server	if	it	doesn’t	already	know	it.	Once	a	DNS	reply	with	the
appropriate	IP	address	comes	back,	that	information	can	be	added	to	a	local
cache,	and	HTTP	communication	(using	TCP)	can	commence.

Although	nothing	 looks	out	of	 the	ordinary	here,	 the	14	DNS	packets
are	notable.	A	DNS	request	for	a	single	domain	name	is	typically	contained
in	a	 single	packet,	 and	 the	 response	also	constitutes	 a	 single	packet	 (unless

http://cdn.optimizely.com
http://www.espn.com/


it’s	very	large,	in	which	case	DNS	will	utilize	TCP).	Since	there	are	14	DNS
packets	here,	it’s	possible	that	as	many	as	seven	DNS	queries	were	generated
(7	queries	+	7	replies	=	14	packets).	Figure	10-2	did	show	HTTP	requests	to
seven	different	domains,	but	Pete	only	typed	a	single	URL	into	his	browser.
Why	are	all	of	these	extra	requests	being	made?

In	a	simple	world,	visiting	a	web	page	would	be	as	easy	as	querying	one
server	 and	 pulling	 all	 of	 its	 content	 in	 a	 single	 HTTP	 conversation.	 In
reality,	 an	 individual	 web	 page	 may	 provide	 content	 hosted	 on	 multiple
servers.	 All	 of	 the	 text-based	 content	 could	 be	 in	 one	 place,	 the	 graphics
could	be	in	another,	and	embedded	videos	could	be	in	a	third.	That	doesn’t
include	ads,	which	could	be	hosted	on	multiple	providers	spanning	dozens	of
individual	servers.	Whenever	an	HTTP	client	parses	HTML	code	and	finds
a	reference	to	content	on	another	host,	it	will	attempt	to	query	that	host	for
the	 content,	 which	 can	 generate	 additional	 DNS	 queries	 and	 HTTP
requests.	 This	 is	 exactly	 what	 happened	 here	 when	 Pete	 visited	 ESPN.
While	 he	 may	 have	 intended	 to	 view	 content	 only	 from	 a	 single	 source,
references	 to	 additional	 content	 were	 found	 in	 the	 HTML	 code,	 and	 his
browser	automatically	requested	that	content	from	multiple	other	domains.

Now	that	we	understand	why	all	of	 these	extra	requests	exist,	our	next
step	is	to	examine	the	individual	conversations	associated	with	each	request
(Statistics	▶	Conversations).	Reviewing	the	Conversations	window	(Figure
10-4)	provides	an	important	clue.

Figure	10-4:	Reviewing	IP	conversations

We	 discovered	 earlier	 that	 there	 were	 seven	DNS	 requests	 and	 seven
HTTP	 requests	 to	 match.	With	 that	 in	 mind,	 it	 would	 be	 reasonable	 to



expect	 that	 there	would	 also	 be	 seven	matching	 IP	 conversations,	 but	 that
isn’t	the	case.	There	are	eight.	How	can	that	be	explained?

One	 thought	 might	 be	 that	 the	 capture	 was	 “contaminated”	 by	 an
additional	 conversation	 unrelated	 to	 the	 problem	 at	 hand.	 Ensuring	 your
analysis	 doesn’t	 suffer	 due	 to	 irrelevant	 traffic	 is	 certainly	 something	 you
should	be	cognizant	of,	but	that	isn’t	the	issue	with	this	conversation.	If	you
examine	each	HTTP	request	and	note	 the	IP	address	 the	request	was	 sent
to,	 you	 should	 be	 left	with	 one	 conversation	 that	 doesn’t	 have	 a	matching
HTTP	request.	The	endpoints	 for	this	conversation	are	Pete’s	workstation
(172.16.16.154)	 and	 the	 remote	 IP	 203.0.113.94.	 This	 conversation	 is
represented	 by	 the	 bottom	 line	 in	 Figure	 10-4.	We	 note	 that	 6,774	 bytes
were	sent	to	this	unknown	host	but	zero	bytes	were	sent	back:	that’s	worth
digging	into.

If	 you	 filter	 down	 into	 this	 conversation	 (right-click	 the	 conversation
and	 choose	Apply	 As	 Filter	▶	 Selected	▶	 A<->B),	 you	 can	 apply	 your
knowledge	of	TCP	to	identify	what’s	gone	wrong	(Figure	10-5).

Figure	10-5:	Reviewing	the	unexpected	connection

With	 normal	 TCP	 communication,	 you	 expect	 to	 see	 a	 standard
SYNSYN/ACK-ACK	handshake	 sequence.	 In	 this	 case,	Pete’s	workstation
sent	a	SYN	packet	to	203.0.113.94,	but	we	never	see	a	SYN/ACK	response.
Not	only	this,	but	Pete’s	workstation	sent	multiple	SYN	packets	to	no	avail,
eventually	 leading	his	machine	 to	 send	TCP	 retransmission	packets.	We’ll
talk	more	about	the	specifics	of	TCP	retransmissions	in	Chapter	11,	but	the
key	takeaway	here	is	that	one	host	is	sending	packets	that	it	never	receives	a
response	 to.	Looking	at	 the	Time	column,	we	 see	 that	 the	 retransmissions
continue	 for	 95	 seconds	 without	 a	 response.	 In	 network	 communications,
this	is	slower	than	molasses.

We	 have	 identified	 seven	 DNS	 requests,	 seven	 HTTP	 requests,	 and
eight	IP	conversations.	Since	we	know	that	the	capture	is	not	contaminated



with	 extra	 data,	 it’s	 reasonable	 to	 think	 that	 the	 mysterious	 eighth	 IP
conversation	 is	 probably	 the	 source	 of	 Pete’s	 slowly	 and	 incompletely
loading	 web	 page.	 For	 some	 reason,	 Pete’s	 workstation	 is	 trying	 to
communicate	with	a	device	that	either	doesn’t	exist	or	just	isn’t	listening.	To
understand	why	this	is	happening,	we	won’t	look	at	what’s	in	the	capture	file;
instead,	we’ll	consider	what	isn’t	there.

When	 Pete	 browsed	 to	 http://www.espn.com/,	 his	 browser	 identified
resources	 hosted	 on	 other	 domains.	To	 retrieve	 that	 data,	 his	 workstation
generated	DNS	requests	to	find	their	IP	addresses,	then	connected	to	them
via	TCP	 so	 that	 an	HTTP	 request	 for	 the	 content	 could	be	 sent.	For	 the
conversation	with	 203.0.113.94,	 there	 is	 no	DNS	 request	 to	 be	 found.	 So,
how	did	Pete’s	workstation	know	about	that	address?

If	 you	 remember	 our	 discussion	 about	 DNS	 in	 Chapter	 9	 or	 are
otherwise	 familiar	 with	 it,	 you	 know	 that	 most	 systems	 implement	 some
form	 of	 DNS	 caching.	 This	 allows	 them	 to	 reference	 a	 local	 DNS-to-IP
address	mapping	that	has	already	been	retrieved	without	having	to	generate
a	 DNS	 request	 every	 time	 you	 visit	 a	 domain	 that	 you	 frequently
communicate	 with.	 Eventually,	 these	 DNS-to-IP	 mappings	 expire,	 and	 a
new	request	must	be	generated.	However,	if	a	DNS-to-IP	mapping	changes
and	a	device	doesn’t	generate	a	DNS	request	 to	get	 the	new	address	when
visiting	the	next	time,	the	device	will	attempt	to	connect	to	an	address	that	is
no	longer	valid.

In	Pete’s	case,	that	is	exactly	what	happened.	Pete’s	workstation	already
had	 a	 cached	 DNS-to-IP	 mapping	 for	 a	 domain	 that	 hosts	 content	 for
ESPN.	Since	this	cached	entry	exists,	a	DNS	request	was	not	generated,	and
his	system	attempted	to	go	ahead	and	connect	to	the	old	address.	However,
that	address	was	no	longer	configured	to	respond	to	requests.	As	a	result,	the
requests	timed	out,	and	the	content	never	loaded.

Fortunately	for	Pete,	clearing	his	DNS	cache	manually	is	possible	with	a
few	keystrokes	on	the	command	line	or	in	a	terminal	window.	Alternatively,
he	could	also	just	try	again	in	a	few	minutes	when	the	DNS	cache	entry	will
probably	have	expired	so	a	new	request	will	be	generated.

Lessons	Learned

That’s	a	lot	of	work	just	to	find	out	that	Kentucky	beat	Duke	by	90	points,

http://www.espn.com/


but	we	walk	away	with	a	deeper	understanding	of	 the	relationship	between
network	hosts.	 In	this	scenario,	we	were	able	to	work	toward	a	solution	by
assessing	 multiple	 data	 points	 related	 to	 the	 requests	 and	 conversations
occurring	 within	 the	 capture.	 From	 there,	 we	 were	 able	 to	 spot	 a	 few
inconsistencies	 that	 took	 us	 down	 a	 path	 toward	 finding	 the	 failed
communication	 between	 the	 client	 and	 one	 of	 ESPN’s	 content	 delivery
servers.

In	 the	 real	world,	 diagnosing	 problems	 is	 rarely	 as	 simple	 as	 scrolling
through	 a	 list	 of	 packets	 and	 looking	 for	 the	 ones	 that	 look	 funny.
Troubleshooting	 even	 the	 simplest	 problems	 can	 result	 in	 very	 large
captures	that	rely	on	the	use	of	Wireshark’s	analysis	and	statistics	features	to
spot	 anomalies.	 Getting	 familiar	 with	 this	 style	 of	 analysis	 is	 critical	 to
successful	troubleshooting	at	the	packet	level.

If	you’d	like	to	see	an	example	of	what	normal	communication	looks	like
between	a	web	browser	and	ESPN,	try	browsing	to	the	site	while	capturing
traffic	yourself	 and	 see	 if	you	can	 identify	all	of	 the	 servers	 responsible	 for
delivering	content.

Unresponsive	Weather	Service

weather_broken.pcapng	weather_working.pcapng

Our	 second	 scenario	 once	 again	 involves	 our	 pal	 Packet	 Pete.	 Among	 his
many	hobbies,	Pete	fancies	himself	an	amateur	meteorologist	and	doesn’t	go
more	than	a	few	hours	without	checking	current	conditions	and	the	forecast.
He	doesn’t	rely	solely	on	the	local	news	forecast	though;	he	actually	runs	a
small	 weather	 station	 outside	 his	 home	 that	 reports	 data	 up	 to
https://www.wunderground.com/	 for	 aggregation	 and	 viewing.	 Today,	 Pete
went	 to	 check	 his	 weather	 station	 to	 see	 how	much	 the	 temperature	 had
dropped	 overnight,	 but	 found	 that	 his	 station	 hadn’t	 reported	 in	 to
Wunderground	in	over	nine	hours,	since	around	midnight	(Figure	10-6).

https://www.wunderground.com/


Figure	10-6:	The	weather	station	hasn’t	sent	a	report	in	nine	hours.

Tapping	into	the	Wire

In	 Pete’s	 network,	 the	weather	 station	mounted	 on	 his	 roof	 connects	 to	 a
receiver	inside	his	house	through	an	RF	connection.	That	receiver	plugs	into
his	 network	 switch	 and	 reports	 statistics	 to	 Wunderground	 through	 the
internet.	This	architecture	is	diagrammed	in	Figure	10-7.



Figure	10-7:	Weather	station	network	architecture

The	receiver	has	a	simple	web-based	management	page,	but	Pete	logged
into	 it	 only	 to	 find	 a	 cryptic	message	 about	 the	 last	 synchronization	 time
with	 no	 additional	 guidance	 for	 troubleshooting—the	 software	 doesn’t
provide	 any	 detailed	 error	 logging.	 Since	 the	 receiver	 is	 the	 hub	 of
communication	 for	 the	 weather	 station	 infrastructure,	 it	 makes	 sense	 to
capture	packets	 transmitted	 to	 and	 from	 that	device	 to	 try	 to	diagnose	 the
issue.	This	 is	a	home	network,	so	port	mirroring	is	probably	not	an	option
on	the	SOHO	switch.	Our	best	bet	is	to	use	a	cheap	tap	or	to	perform	ARP
cache	 poisoning	 to	 intercept	 these	 packets.	 The	 captured	 packets	 are
contained	in	the	file	weather_broken.pcapng.

Analysis

Upon	 opening	 the	 capture	 file,	 you’ll	 see	 that	 we’re	 dealing	 with	 HTTP
communication	 once	 again.	 The	 packet	 capture	 is	 limited	 to	 a	 single
conversation	 between	 Pete’s	 local	 weather	 receiver	 172.16.16.154	 and	 an
unknown	remote	device	on	the	internet,	38.102.136.125	(Figure	10-8).

Figure	10-8:	Isolated	weather	station	receiver	communication



Before	we	examine	the	characteristics	of	the	conversation,	let’s	see	if	we
can	identify	the	unknown	IP.	Without	extensive	research,	we	might	not	be
able	 to	 find	 out	 whether	 this	 is	 the	 exact	 IP	 address	 that	 Pete’s	 weather
receiver	should	be	talking	to,	but	we	can	at	least	verify	that	it	is	part	of	the
Wunderground	infrastructure	by	doing	a	WHOIS	query.	You	can	conduct	a
WHOIS	 query	 through	 most	 domain	 registration	 or	 regional	 internet
registry	websites,	 such	as	http://whois.arin.net/.	 In	 this	case,	 it	 looks	 like	 the
IP	belongs	to	Cogent,	an	internet	service	provider	(ISP)	(Figure	10-9).	PSINet
Inc.	 is	 also	 mentioned	 here,	 but	 a	 quick	 search	 reveals	 that	 most	 PSINet
assets	were	acquired	by	Cogent	in	the	early	2000s.

Figure	10-9:	WHOIS	data	identifies	the	owner	of	this	IP.

In	some	cases,	if	an	IP	address	is	registered	directly	to	an	organization,
the	WHOIS	 query	 will	 return	 that	 organization’s	 name.	 However,	 many

http://whois.arin.net/


times	 a	 company	will	 simply	 utilize	 IP	 address	 space	 from	 an	 ISP	without
registering	 it	 directly	 to	 itself.	 In	 these	 cases,	 another	 useful	 tactic	 is	 to
search	for	the	autonomous	system	number	(ASN)	that	is	associated	with	an	IP
address.	Organizations	are	required	to	register	for	an	ASN	to	support	certain
types	of	routing	on	the	public	internet.	There	are	a	number	of	ways	to	look
up	IP-to-ASN	associations	(some	WHOIS	lookups	provide	it	automatically),
but	 I	 like	 using	 Team	 Cymru’s	 automated	 lookup	 tool
(https://asn.cymru.com/).	Using	that	tool	for	38.102.136.125,	we	see	that	it	 is
associated	with	AS	36347,	which	 is	associated	with	“Wunderground	–	The
Weather	Channel,	LLC,	US”	 (Figure	10-10).	That	 tells	us	 that	 the	device
the	 weather	 station	 is	 communicating	 with	 is	 at	 least	 in	 the	 right
neighborhood.	 If	we	were	unable	 to	 identify	 the	 correct	 affiliation	 for	 this
address,	 it	might	be	worth	exploring	whether	Pete’s	receiver	was	talking	to
the	wrong	device,	but	the	address	checks	out.

Figure	10-10:	IP-to-ASN	lookup	for	the	external	IP	address

With	 the	 unknown	 host	 characterized,	 we	 can	 dig	 into	 details	 of	 the
communication.	 The	 conversation	 is	 relatively	 short.	 There	 is	 a	 TCP
handshake,	a	single	HTTP	GET	request	and	response,	and	a	TCP	teardown.
The	handshake	and	teardown	appear	to	be	successful,	so	whatever	issue	we
are	 experiencing	 is	 probably	 contained	 with	 the	HTTP	 request	 itself.	 To
examine	this	closely,	we’ll	follow	the	TCP	stream	(Figure	10-11).

https://asn.cymru.com/


Figure	10-11:	Following	the	TCP	stream	of	the	weather	receiver	communication

The	 HTTP	 communication	 begins	 with	 a	 GET	 request	 from	 Pete’s
weather	 receiver	 to	Wunderground.	 No	 HTTP	 content	 was	 transmitted,
but	a	significant	amount	of	data	was	transmitted	in	the	URL	➊.	Transferring
data	through	the	URL	query	string	is	common	for	web	applications,	and	it
looks	like	the	receiver	is	passing	weather	updates	using	this	mechanism.	For
instance,	 you	 see	 fields	 like	 tempf=43.0,	 dewptf=13.6,	 and	 windchillf=43.0.	 The
Wunderground	collection	server	 is	parsing	the	 list	of	 fields	and	parameters
from	the	URL	and	storing	them	in	a	database.

At	 first	 glance,	 everything	 looks	 fine	 with	 the	 GET	 request	 to	 the
Wunderground	server.	But	a	look	at	the	corresponding	reply	shows	an	error
was	reported.	The	server	responded	with	an	HTTP/1.0 200 OK	response	code	➋,
indicating	 that	 the	GET	 request	was	 received	and	successful,	but	 the	body	of
the	response	contains	a	useful	message,	INVALIDPASSWORDID|Password or key and/or
id are incorrect	➌.

If	 you	 look	 back	 up	 at	 the	 request	 URL,	 you’ll	 see	 the	 first	 two
parameters	passed	are	ID	and	PASSWORD.	These	are	used	to	identify	the	weather
station	call	sign	and	authenticate	it	to	the	Wunderground	server.

In	this	case,	Pete’s	weather	station	ID	is	correct,	but	his	password	is	not.
For	 some	 unknown	 reason,	 it	 has	 been	 replaced	 by	 zeros.	 Since	 the	 last
known	 successful	 communication	 was	 at	 midnight,	 it’s	 possible	 an	 update



was	applied	or	the	receiver	rebooted	and	lost	the	password	configuration.

NOTE

While	many	developers	choose	to	pass	parameters	in	URLs,	it’s	generally
frowned	upon	to	do	this	with	passwords	as	seen	here.	That’s	because	requested
URLs	are	transmitted	in	plaintext	when	using	HTTP	without	added
encryption,	such	as	HTTPS.	Therefore,	a	malicious	user	who	happens	to	be
listening	on	the	wire	could	intercept	your	password.

At	 this	point,	Pete	was	 able	 to	 access	his	 receiver	 and	 type	 in	 the	new
password.	Shortly	 thereafter,	his	weather	 station	began	 syncing	data	 again.
An	 example	 of	 successful	 weather	 station	 communication	 can	 be	 found	 in
weather_working.pcapng.	The	communication	stream	is	 shown	in	Figure	10-
12.

Figure	10-12:	Successful	weather	station	communication

The	password	is	now	correct	➊,	and	the	Wunderground	server	responds
with	a	success	message	in	the	HTTP	response	body	➋.

Lessons	Learned

In	this	scenario,	we	encountered	a	third-party	service	that	facilitated	network



communication	by	using	features	available	within	another	protocol	(HTTP).
Fixing	 communication	 problems	 with	 third-party	 services	 is	 something
you’ll	 encounter	 often,	 and	 packet	 analysis	 techniques	 are	 very	well	 suited
for	 troubleshooting	 these	 services	 when	 proper	 documentation	 or	 error
logging	isn’t	available.	This	is	becoming	more	common	now	that	Internet	of
Things	(IoT)	devices,	such	as	this	weather	station,	are	popping	up	all	around
us.

Fixing	 such	 problems	 requires	 the	 ability	 to	 inspect	 unknown	 traffic
sequences	 and	 derive	 how	 things	 are	 supposed	 to	 be	 working.	 Some
applications,	 such	 as	 the	 HTTP-based	 weather	 data	 transmission	 in	 this
scenario,	 are	 fairly	 simple.	 Others	 are	 quite	 complex,	 requiring	 multiple
transactions,	 the	 addition	 of	 encryption,	 or	 even	 custom	 protocols	 that
Wireshark	may	not	natively	parse.

As	 you	 investigate	 more	 third-party	 services,	 you’ll	 eventually	 start
learning	 about	 common	 patterns	 developers	 use	 to	 facilitate	 network
communication.	 This	 knowledge	 will	 increase	 your	 effectiveness	 when
troubleshooting	them.

No	Internet	Access
In	many	scenarios,	you	may	need	to	diagnose	and	solve	internet	connectivity
problems.	We’ll	cover	some	common	problems	you	might	encounter.

Gateway	Configuration	Problems

nowebaccess1.pcapng

Our	 next	 scenario	 presents	 a	 common	 problem:	 a	 user	 cannot	 access	 the
internet.	We	have	verified	that	the	user	can	access	all	the	internal	resources
of	 the	 network,	 including	 shares	 on	 other	 workstations	 and	 applications
hosted	on	local	servers.

The	 network	 architecture	 is	 straightforward,	 as	 all	 clients	 and	 servers
connect	to	a	series	of	simple	switches.	Internet	access	 is	handled	through	a
single	router	serving	as	the	default	gateway,	and	IP-addressing	 information
is	provided	by	DHCP.	This	is	a	very	common	scenario	in	small	offices.



Tapping	into	the	Wire

To	determine	the	cause	of	the	issue,	we	can	have	the	user	attempt	to	browse
the	 internet	 while	 our	 sniffer	 is	 listening	 on	 the	 wire.	 We	 use	 the
information	 from	 Chapter	 2	 (see	 Figure	 2-15)	 to	 determine	 the	 most
appropriate	method	for	placing	our	sniffer.

The	switches	on	our	network	don’t	support	port	mirroring.	We	already
have	 to	 interrupt	 the	user	 to	 conduct	 our	 test,	 so	we	 can	 assume	 that	 it	 is
okay	 to	 take	 them	 offline	 once	 again.	 Even	 though	 this	 isn’t	 a	 high-
throughput	scenario,	a	TAP	would	be	appropriate	here	if	one	were	available.
The	resulting	file	is	nowebaccess1.pcapng.

Analysis

The	 traffic	 capture	 begins	 with	 an	 ARP	 request	 and	 reply,	 as	 shown	 in
Figure	 10-13.	 In	 packet	 1,	 the	 user’s	 computer,	 with	 a	 MAC	 address	 of
00:25:b3:bf:91:ee	and	IP	address	172.16.0.8,	sends	an	ARP	broadcast	packet
to	 all	 computers	 on	 the	 network	 segment	 in	 an	 attempt	 to	 find	 the	MAC
address	associated	with	the	IP	address	of	its	default	gateway,	172.16.0.10.

Figure	10-13:	ARP	request	and	reply	for	the	computer’s	default	gateway

A	response	 is	 received	 in	packet	2,	and	the	user’s	computer	 learns	 that
172.16.0.10	is	at	00:24:81:a1:f6:79.	Once	this	reply	is	received,	the	computer
has	a	route	to	a	gateway	that	should	be	able	to	direct	it	to	the	internet.

Following	 the	 ARP	 reply,	 the	 computer	 must	 attempt	 to	 resolve	 the
DNS	name	of	the	website	to	an	IP	address	using	DNS	in	packet	3.	As	shown
in	Figure	10-14,	the	computer	does	this	by	sending	a	DNS	query	packet	to
its	primary	DNS	server,	4.2.2.2	➊.



Figure	10-14:	A	DNS	query	sent	to	4.2.2.2

Under	normal	 circumstances,	 a	DNS	 server	would	 respond	 to	 a	DNS
query	very	quickly,	but	that’s	not	the	case	here.	Rather	than	a	response,	we
see	 the	 same	 DNS	 query	 sent	 a	 second	 time	 to	 a	 different	 destination
address.	As	 shown	 in	Figure	 10-15,	 in	 packet	 4,	 the	 second	DNS	query	 is
sent	 to	 the	 secondary	 DNS	 server	 configured	 on	 the	 computer,	 which	 is
4.2.2.1	➊.

Figure	10-15:	A	second	DNS	query	sent	to	4.2.2.1

Again,	no	reply	is	received	from	the	DNS	server,	and	the	query	is	sent
again	 1	 second	 later	 to	 4.2.2.2.	 This	 process	 repeats	 itself,	 alternating



between	the	primary	➊	 and	secondary	➋	 configured	DNS	servers	over	 the
next	 several	 seconds,	 as	 shown	 in	 Figure	 10-16.	 The	 entire	 process	 takes
around	 8	 seconds	 ➌,	 or	 until	 the	 user’s	 internet	 browser	 reports	 that	 a
website	is	inaccessible.

Figure	10-16:	DNS	queries	are	repeated	until	communication	stops.

Based	on	the	packets	we’ve	seen,	we	can	begin	to	pinpoint	the	source	of
the	problem.	First,	we	see	a	successful	ARP	request	to	what	we	believe	is	the
default	gateway	router	for	the	network,	so	we	know	that	device	is	online	and
communicating.	 We	 also	 know	 that	 the	 user’s	 computer	 is	 actually
transmitting	packets	on	 the	network,	 so	we	can	assume	 there	 isn’t	 an	 issue
with	the	protocol	stack	on	the	computer	 itself.	The	problem	clearly	begins
to	occur	when	the	DNS	request	is	made.

In	 the	 case	 of	 this	 network,	DNS	 queries	 are	 resolved	 by	 an	 external
server	on	the	internet	(4.2.2.2	or	4.2.2.1).	This	means	that	for	resolution	to
take	 place	 correctly,	 the	 router	 responsible	 for	 routing	 packets	 to	 the
internet	must	 successfully	 forward	 the	DNS	queries	 to	 the	 server,	 and	 the
server	must	 respond.	 This	 all	 must	 happen	 before	HTTP	 can	 be	 used	 to
request	the	web	page	itself.

Because	no	other	users	are	having	issues	connecting	to	the	internet,	the
network	router	and	remote	DNS	server	are	probably	not	the	source	of	 the
problem.	 The	 only	 thing	 remaining	 to	 investigate	 is	 the	 user’s	 computer
itself.

Upon	deeper	examination	of	the	affected	computer,	we	find	that	rather
than	 receiving	 a	 DHCP-assigned	 address,	 the	 computer	 has	 manually
assigned	 addressing	 information,	 and	 the	 default	 gateway	 address	 is	 set
incorrectly.	The	address	set	as	the	default	gateway	is	not	a	router	and	cannot
forward	the	DNS	query	packets	outside	the	network.

Lessons	Learned



The	 problem	 in	 this	 scenario	 resulted	 from	 a	misconfigured	 client.	While
the	problem	itself	turned	out	to	be	simple,	it	significantly	impacted	the	user.
Troubleshooting	 a	 simple	 misconfiguration	 like	 this	 one	 could	 take	 quite
some	time	 for	someone	 lacking	knowledge	of	 the	network	or	 the	ability	 to
perform	a	quick	packet	analysis,	as	we’ve	done	here.	As	you	can	see,	packet
analysis	is	not	limited	to	large	and	complex	problems.

Notice	that	because	we	didn’t	enter	the	scenario	knowing	the	IP	address
of	 the	 network’s	 gateway	 router,	 Wireshark	 didn’t	 identify	 the	 problem
exactly,	 but	 it	 did	 tell	 us	where	 to	 look,	 saving	 valuable	 time.	Rather	 than
examining	 the	 gateway	 router,	 contacting	 our	 ISP,	 or	 trying	 to	 find	 the
resources	to	troubleshoot	the	remote	DNS	server,	we	were	able	to	focus	our
troubleshooting	efforts	on	the	computer	itself,	which	was,	in	fact,	the	source
of	the	problem.

NOTE

Had	we	been	more	familiar	with	this	particular	network’s	IP-addressing
scheme,	analysis	could	have	been	even	faster.	The	problem	could	have	been
identified	immediately	once	we	noticed	that	the	ARP	request	was	sent	to	an	IP
address	different	from	that	of	the	gateway	router.	These	simple
misconfigurations	are	often	the	source	of	network	problems	and	can	typically	be
resolved	quickly	with	a	bit	of	packet	analysis.

Unwanted	Redirection

nowebaccess2.pcapng

In	 this	 scenario,	we	 again	 have	 a	 user	who	 is	 having	 trouble	 accessing	 the
internet	 from	 their	 workstation.	However,	 unlike	 the	 user	 in	 the	 previous
scenario,	 this	user	can	access	 the	 internet.	Their	problem	is	 that	 they	can’t
access	 their	home	page,	https://www.google.com/.	When	the	user	attempts	 to
reach	any	domain	hosted	by	Google,	they	are	directed	to	a	browser	page	that
says,	“Internet	Explorer	cannot	display	the	web	page.”	This	issue	is	affecting
only	this	particular	user.

As	with	the	previous	scenario,	this	is	a	small	network	with	a	few	simple
switches	and	a	single	router	serving	as	the	default	gateway.

https://www.google.com/


Tapping	into	the	Wire

To	 begin	 our	 analysis,	 we	 have	 the	 user	 attempt	 to	 browse	 to
https://www.google.com/	 while	 we	 use	 a	 tap	 to	 listen	 to	 the	 traffic	 that	 is
generated.	The	resulting	file	is	nowebaccess2.pcapng.

Analysis

The	capture	begins	with	an	ARP	request	and	reply,	as	shown	in	Figure	10-
17.	 In	 packet	 1,	 the	 user’s	 computer,	 with	 a	 MAC	 address	 of
00:25:b3:bf:91:ee	and	an	 IP	address	of	172.16.0.8,	 sends	 an	ARP	broadcast
packet	 to	 all	 computers	on	 the	network	 segment	 in	 an	 attempt	 to	 find	 the
MAC	address	associated	with	the	host’s	IP	address	172.16.0.102.	We	don’t
immediately	recognize	this	address.

Figure	10-17:	ARP	request	and	reply	for	another	device	on	the	network

In	packet	2,	the	user’s	computer	learns	that	the	IP	address	172.16.0.102
is	at	00:21:70:c0:56:f0.	Based	on	the	previous	scenario,	we	might	assume	that
this	 is	 the	gateway	router’s	address	and	that	address	 is	used	so	that	packets
can	once	again	be	forwarded	to	the	external	DNS	server.	However,	as	shown
in	Figure	 10-18,	 the	 next	 packet	 is	 not	 a	DNS	 request	 but	 a	TCP	packet
from	172.16.0.8	to	172.16.0.102.	It	has	the	SYN	flag	set	➌,	 indicating	that
this	 is	 the	 first	 packet	 in	 the	 handshake	 for	 a	 new	TCP-based	 connection
between	the	two	hosts.

https://www.google.com/


Figure	10-18:	TCP	SYN	packet	sent	from	one	internal	host	to	another

Notably,	 the	 TCP	 connection	 attempt	 is	 made	 to	 port	 80	 ➋	 on
172.16.0.102	➊,	which	is	typically	associated	with	HTTP	traffic.

As	 shown	 in	 Figure	 10-19,	 this	 connection	 attempt	 is	 abruptly	 halted
when	host	172.16.0.102	sends	a	TCP	packet	in	response	(packet	4)	with	the
RST	and	ACK	flags	set	➊.



Figure	10-19:	TCP	RST	packet	sent	in	response	to	the	TCP	SYN

Recall	 from	Chapter	 8	 that	 a	 packet	 with	 the	RST	 flag	 set	 is	 used	 to
terminate	 a	 TCP	 connection.	 Here,	 the	 host	 at	 172.16.0.8	 attempted	 to
establish	 a	 TCP	 connection	 to	 the	 host	 at	 172.16.0.102	 on	 port	 80.
Unfortunately,	 because	 that	 host	 has	 no	 services	 configured	 to	 listen	 to
requests	 on	 port	 80,	 the	 TCP	 RST	 packet	 is	 sent	 to	 terminate	 the
connection.	This	process	 repeats	 three	 times	before	 communication	 finally
ends,	as	shown	in	Figure	10-20.	At	this	point,	the	user	receives	a	message	in
their	browser	saying	that	the	page	can’t	be	displayed.

Figure	10-20:	The	TCP	SYN	and	RST	packets	are	seen	three	times	in	total.

After	 examining	 the	 configuration	 of	 another	 network	 device	 that	 is
working	 correctly,	 we	 are	 concerned	 by	 the	 ARP	 request	 and	 reply	 in
packets	1	and	2,	because	the	ARP	request	isn’t	for	the	gateway	router’s	actual
MAC	address	but	for	some	unknown	device.	Following	the	ARP	request	and
reply,	 we	 would	 expect	 to	 see	 a	DNS	 query	 sent	 to	 our	 configured	DNS



server	in	order	to	find	the	IP	address	associated	with	https://www.google.com/,
but	 we	 don’t.	 There	 are	 two	 conditions	 that	 could	 prevent	 a	 DNS	 query
from	being	made:

•					The	device	initiating	the	connection	already	has	the	DNS	name-to-IP
address	mapping	in	its	DNS	cache	(as	in	the	first	scenario	in	this
chapter).

•					The	device	connecting	to	the	DNS	name	already	has	the	DNS	name-
to-IP	address	mapping	specified	in	its	hosts	file.

Upon	 further	 examination	 of	 the	 client	 computer,	 we	 find	 that	 the
computer’s	hosts	 file	has	an	entry	 for	https://www.google.com/	associated	with
the	 internal	 IP	address	172.16.0.102.	This	erroneous	entry	 is	 the	source	of
our	user’s	problems.

A	computer	will	typically	use	its	hosts	file	as	the	authoritative	source	for
DNS	 name-to-IP	 address	 mappings,	 and	 it	 will	 check	 that	 file	 before
querying	an	outside	source.	In	this	scenario,	the	user’s	computer	checked	its
hosts	 file,	 found	 the	 entry	 for	 https://www.google.com/,	 and	 decided	 that
https://www.google.com/	was	actually	on	its	own	local	network	segment.	Next,
it	 sent	 an	ARP	 request	 to	 the	 host,	 received	 a	 response,	 and	 attempted	 to
initiate	a	TCP	connection	to	172.16.0.102	on	port	80.	However,	because	the
remote	 system	was	 not	 configured	 as	 a	 web	 server,	 it	 wouldn’t	 accept	 the
connection	attempts.

Once	 the	 hosts	 file	 entry	 was	 removed,	 the	 user’s	 computer	 began
communicating	correctly	and	was	able	to	access	https://www.google.com/.

NOTE

To	examine	your	hosts	file	on	a	Windows	system,	open
C:\Windows\System32\	drivers\etc\hosts.	On	Linux,	view	/etc/hosts.

This	very	common	scenario	is	one	that	malware	has	been	using	for	years
to	redirect	users	 to	websites	hosting	malicious	code.	 Imagine	 if	an	attacker
were	to	modify	your	hosts	file	so	that	every	time	you	went	to	do	your	online
banking,	 you	were	 redirected	 to	 a	 fake	 site	 designed	 to	 steal	 your	 account
credentials!

https://www.google.com/
https://www.google.com/
https://www.google.com/
https://www.google.com/
https://www.google.com/


Lessons	Learned

As	 you	 continue	 to	 analyze	 traffic,	 you	 will	 learn	 both	 how	 the	 various
protocols	 work	 and	 how	 to	 break	 them.	 In	 this	 scenario,	 the	DNS	 query
wasn’t	sent	because	the	client	was	misconfigured,	not	because	of	any	external
limitations	or	misconfigurations.

By	examining	this	problem	at	the	packet	 level,	we	were	able	to	quickly
spot	an	IP	address	that	was	unknown	and	to	determine	that	the	DNS,	a	key
component	 of	 this	 communication	 process,	 was	 missing.	 Using	 this
information,	we	were	able	to	identify	the	client	as	the	source	of	the	problem.

Upstream	Problems

nowebaccess3.pcapng

As	with	the	previous	two	scenarios,	in	this	scenario,	a	user	complains	of	no
internet	 access	 from	 their	 workstation.	 This	 user	 has	 narrowed	 the	 issue
down	to	a	single	website,	https://www.google.com/.	Upon	further	investigation,
we	find	that	this	issue	is	affecting	everyone	in	the	organization—no	one	can
access	Google	domains.

The	 network	 is	 configured	 as	 in	 the	 two	 prior	 scenarios,	 with	 a	 few
simple	switches	and	a	single	router	connecting	the	network	to	the	internet.

Tapping	into	the	Wire

To	 troubleshoot	 this	 issue,	 we	 first	 browse	 to	 https://www.google.com/	 to
generate	traffic.	Because	this	issue	is	network-wide,	ideally	any	device	in	the
network	should	be	able	to	reproduce	the	issue	using	most	capture	methods.
The	file	resulting	from	the	capture	via	a	tap	is	nowebaccess3.pcapng.

Analysis

This	packet	capture	begins	with	DNS	traffic	 instead	of	 the	ARP	traffic	we
are	used	 to	 seeing.	Because	 the	 first	packet	 in	 the	capture	 is	 to	an	external
address,	and	packet	2	contains	a	reply	from	that	address,	we	can	assume	that
the	ARP	process	has	already	happened	and	the	MAC-to-IP	address	mapping
for	our	gateway	router	already	exists	in	the	host’s	ARP	cache	at	172.16.0.8.

As	shown	in	Figure	10-21,	the	first	packet	in	the	capture	is	from	the	host

https://www.google.com/
https://www.google.com/


172.16.0.8	 to	 address	 4.2.2.1	➊	 and	 is	 a	 DNS	 packet	➋.	 Examining	 the
contents	 of	 the	 packet,	 we	 see	 that	 it	 is	 a	 query	 for	 the	 A	 record	 for
www.google.com	➌	that	will	map	the	DNS	name	to	an	IP	address.

Figure	10-21:	DNS	query	for	www.google.com	A	record

The	 response	 to	 the	 query	 from	 4.2.2.1	 is	 the	 second	 packet	 in	 the
capture	 file,	 as	 shown	 in	Figure	 10-22.	Here,	we	 see	 that	 the	name	 server
that	responded	to	this	request	provided	multiple	answers	to	the	query	➊.	At
this	point,	all	looks	good,	and	communication	is	occurring	as	it	should.

http://www.google.com
http://www.google.com


Figure	10-22:	DNS	reply	with	multiple	A	records

Now	 that	 the	 user’s	 computer	 has	 determined	 the	 web	 server’s	 IP
address,	it	can	attempt	to	communicate	with	the	server.	As	shown	in	Figure
10-23,	 this	 process	 is	 initiated	 in	 packet	 3,	 with	 a	 TCP	 packet	 sent	 from
172.16.0.8	to	74.125.95.105	➊.	This	destination	address	comes	from	the	first
A	record	provided	 in	the	DNS	query	response	seen	 in	packet	2.	The	TCP
packet	has	the	SYN	flag	set	➋,	and	it’s	attempting	to	communicate	with	the
remote	server	on	port	80	➌.



Figure	10-23:	The	SYN	packet	is	attempting	to	initiate	a	connection	on	port	80.

Because	this	is	a	TCP	handshake	process,	we	know	that	we	should	see	a
TCP	 SYN/ACK	 packet	 sent	 in	 response,	 but	 instead,	 after	 a	 short	 time,
another	SYN	packet	is	sent	from	the	source	to	the	destination.	This	process
occurs	once	more	after	approximately	one	second,	as	shown	in	Figure	10-24,
at	 which	 point	 communication	 stops	 and	 the	 browser	 reports	 that	 the
website	could	not	be	found.

Figure	10-24:	The	TCP	SYN	packet	is	attempted	three	times	with	no	response	received.

As	 we	 troubleshoot	 this	 scenario,	 consider	 that	 we	 know	 that	 the
workstation	within	 our	 network	 can	 connect	 to	 the	 outside	world	 because
the	 DNS	 query	 to	 our	 external	 DNS	 server	 at	 4.2.2.1	 is	 successful.	 The
DNS	server	responds	with	what	appears	to	be	a	valid	address,	and	our	hosts
attempt	to	connect	to	one	of	those	addresses.	Also,	the	local	workstation	we
are	attempting	to	connect	from	appears	to	be	functioning.

The	 problem	 is	 that	 the	 remote	 server	 simply	 isn’t	 responding	 to	 our
connection	 requests;	 a	TCP	RST	packet	 is	not	 sent.	This	might	occur	 for
several	 reasons:	 a	misconfigured	web	 server,	 a	 corrupted	protocol	 stack	on
the	web	server,	or	a	packet-filtering	device	on	the	remote	network	(such	as	a
firewall).	Assuming	there	is	no	local	packet-filtering	device	in	place,	all	other
potential	 solutions	 are	 on	 the	 remote	network	 and	beyond	our	 control.	 In
this	 case,	 the	web	 server	was	 not	 functioning	 correctly,	 and	no	 attempt	 to
access	 it	 succeeded.	 Once	 the	 problem	 was	 corrected	 on	 Google’s	 end,



communication	was	able	to	proceed.

Lessons	Learned

In	this	scenario,	the	problem	wasn’t	one	that	we	could	correct.	Our	analysis
determined	that	the	issue	wasn’t	with	the	hosts	on	our	network,	our	router,
or	the	external	DNS	server	providing	us	with	name	resolution	services.	The
issue	lay	outside	our	network	infrastructure.

Sometimes	discovering	that	a	problem	isn’t	really	ours	not	only	relieves
stress	but	also	saves	face	when	management	comes	knocking.	I	have	fought
with	many	ISPs,	vendors,	and	software	companies	who	claim	that	an	issue	is
not	their	fault,	but	as	you’ve	just	seen,	packets	don’t	lie.

Inconsistent	Printer
In	 the	 next	 scenario,	 an	 IT	 help	 desk	 administrator	 is	 having	 trouble
resolving	a	printing	 issue.	Users	 in	 the	 sales	department	are	 reporting	 that
the	high-volume	printer	is	malfunctioning.	When	a	user	sends	a	large	print
job	 to	 the	printer,	 it	will	print	 several	pages	 and	 then	 stop	printing	before
the	job	is	done.	Multiple	driver	configuration	changes	have	been	attempted
but	have	been	unsuccessful.	The	help	desk	staff	would	like	you	to	ensure	that
this	isn’t	a	network	problem.

Tapping	into	the	Wire

inconsistent_printer.pcapng

The	common	thread	in	this	problem	is	the	printer,	so	we	begin	by	placing
our	sniffer	as	close	to	the	printer	as	we	can.	While	we	can’t	install	Wireshark
on	the	printer	itself,	the	switches	used	in	this	network	are	advanced	layer	3
switches,	 so	we	 can	use	port	mirroring.	We’ll	mirror	 the	port	used	by	 the
printer	 to	an	empty	port	 and	connect	 a	 laptop	with	Wireshark	 installed	 to
this	port.	Once	this	setup	is	complete,	we’ll	have	a	user	send	a	large	print	job
to	 the	 printer	 so	we	 can	monitor	 the	 output.	The	 resulting	 capture	 file	 is
inconsistent_printer.pcapng.



Analysis

A	TCP	handshake	between	 the	network	workstation	 sending	 the	print	 job
(172.16.0.8)	 and	 the	 printer	 (172.16.0.253)	 initiates	 the	 connection	 at	 the
start	 of	 the	 capture	 file.	 Following	 the	 handshake,	 a	 1,460-byte	TCP	data
packet	➊	 is	 sent	 to	 the	printer	 in	packet	4	 (Figure	10-25).	The	amount	of
data	can	be	seen	in	the	far	right	side	of	the	Info	column	in	the	Packet	List
pane	or	at	the	bottom	of	the	TCP	header	information	in	the	Packet	Details
pane.

Figure	10-25:	Data	being	transmitted	to	the	printer	over	TCP

Following	packet	4,	another	data	packet	is	sent	containing	1,460	bytes	of
data	➊,	 as	 you	 can	 see	 in	Figure	 10-26.	This	 data	 is	 acknowledged	by	 the
printer	in	packet	6	➋.



Figure	10-26:	Normal	data	transmission	and	TCP	acknowledgments

The	flow	of	data	continues	until	the	last	few	packets	in	the	capture	are
reached.	Packet	121	is	a	TCP	retransmission	packet,	and	a	sign	of	trouble,	as
shown	in	Figure	10-27.

A	 TCP	 retransmission	 packet	 is	 sent	 when	 one	 device	 sends	 a	 TCP
packet	 to	 a	 remote	 device	 and	 the	 remote	 device	 doesn’t	 acknowledge	 the
transmission.	Once	a	retransmission	threshold	is	reached,	the	sending	device
assumes	 that	 the	remote	device	did	not	 receive	 the	data,	and	 it	 retransmits
the	 packet.	 This	 process	 is	 repeated	 a	 few	 times	 before	 communication
effectively	stops.



Figure	10-27:	These	TCP	retransmission	packets	are	a	sign	of	a	potential	problem.

In	this	scenario,	the	retransmission	is	sent	from	the	client	workstation	to
the	printer	because	 the	printer	 failed	 to	 acknowledge	 the	 transmitted	data.
As	shown	in	Figure	10-27,	if	you	expand	the	SEQ/ACK	analysis	portion	of
the	TCP	header	➊	along	with	the	additional	information	beneath	it,	you	can
view	 the	 details	 of	 why	 this	 is	 a	 retransmission.	 According	 to	 the	 details
processed	 by	Wireshark,	 packet	 121	 is	 a	 retransmission	 of	 packet	 120	➌.
Additionally,	the	retransmission	timeout	(RTO)	for	the	retransmitted	packet
was	around	5.5	seconds	➋.

When	 analyzing	 the	 delay	 between	 packets,	 you	 can	 change	 the	 time
display	format	to	suit	your	situation.	In	this	case,	because	we	want	to	see	how
long	the	retransmissions	occurred	after	the	previous	packet	was	sent,	change
this	option	by	selecting	View	▶	Time	Display	Format	and	select	Seconds
Since	Previous	Captured	Packet.	Then,	as	shown	in	Figure	10-28,	you	can
clearly	see	that	the	retransmission	in	packet	121	occurs	5.5	seconds	after	the
original	packet	(packet	120)	is	sent	➊.

Figure	10-28:	Viewing	the	time	between	packets	is	useful	for	troubleshooting.

The	next	packet	 is	another	retransmission	of	packet	120.	The	RTO	of
this	packet	is	11.10	seconds,	which	includes	the	5.5	seconds	from	the	RTO
of	the	previous	packet.	A	look	at	the	Time	column	of	the	Packet	List	pane
tells	 us	 that	 this	 retransmission	 was	 sent	 5.6	 seconds	 after	 the	 previous
retransmission.	This	appears	to	be	the	last	packet	in	the	capture	file,	and,	not
coincidentally,	the	printer	stops	printing	at	approximately	this	time.

In	 this	 scenario,	we	 have	 the	 benefit	 of	 dealing	with	 only	 two	 devices
inside	 our	 own	 network,	 so	 we	 just	 need	 to	 determine	 whether	 the	 client
workstation	 or	 the	 printer	 is	 to	 blame.	 We	 can	 see	 that	 data	 is	 flowing
correctly	 for	 quite	 some	 time,	 and	 then	 at	 some	 point,	 the	 printer	 simply
stops	responding	to	the	workstation.	The	workstation	gives	its	best	effort	to
get	 the	data	 to	 its	destination,	as	evidenced	by	the	retransmissions,	but	 the
effort	 is	 met	 with	 no	 response.	 This	 issue	 is	 reproducible	 and	 happens
regardless	of	which	computer	sends	a	print	job,	so	we	assume	the	printer	is
the	source	of	the	problem.



After	further	analysis,	we	find	that	the	printer’s	RAM	is	malfunctioning.
When	large	print	jobs	are	sent	to	the	printer,	it	prints	only	a	certain	number
of	pages,	 likely	until	certain	regions	of	memory	are	accessed.	At	that	point,
the	memory	issue	causes	the	printer	to	be	unable	to	accept	any	new	data,	and
it	ceases	communication	with	the	host	transmitting	the	print	job.

Lessons	Learned

Although	this	printer	problem	wasn’t	the	result	of	a	network	issue,	we	were
able	 to	use	Wireshark	 to	pinpoint	 the	problem.	Unlike	previous	 scenarios,
this	 one	 centered	 solely	 on	 TCP	 traffic.	 Since	 TCP	 is	 concerned	 about
reliably	 transmitting	 data,	 it	 often	 leaves	 us	 with	 useful	 information	 when
two	devices	simply	stop	communicating.

In	 this	 case,	 when	 communication	 abruptly	 stopped,	 we	 were	 able	 to
pinpoint	 the	 location	 of	 the	 problem	 based	 on	 nothing	more	 than	TCP’s
built-in	retransmission	functionality.	As	we	continue	through	our	scenarios,
we	will	 often	 rely	 on	 functionality	 like	 this	 to	 troubleshoot	more	 complex
issues.

No	Branch	Office	Connectivity

stranded_clientside.pcapng	stranded_branchdns.pcapng

In	this	scenario,	we	have	a	company	with	a	central	headquarters	office	and	a
newly	 deployed	 remote	 branch	 office.	 The	 company’s	 IT	 infrastructure	 is
mostly	 contained	 within	 the	 central	 office	 using	 a	Windows	 server-based
domain.	 This	 infrastructure	 is	 supported	 by	 a	 domain	 controller,	 a	 DNS
server,	and	an	application	server	used	to	host	web-based	software	used	daily
by	the	organization’s	employees.	The	branch	office	is	connected	by	routers
to	 establish	 a	wide	 area	 network	 (WAN)	 link.	 Inside	 the	 branch	office	 are
user	 workstations	 and	 a	 slave	DNS	 server	 that	 should	 receive	 its	 resource
record	 information	 from	 the	 upstream	 DNS	 server	 at	 the	 corporate
headquarters.	Figure	10-29	shows	a	map	of	each	office	and	how	the	offices
are	linked	together.



Figure	10-29:	The	relevant	components	for	the	stranded	branch	office	issue

The	 deployment	 team	 is	 rolling	 out	 new	 infrastructure	 to	 the	 branch
office	 when	 it	 finds	 that	 no	 one	 can	 access	 the	 intranet	 web	 application
server	 from	 the	 branch	 office	 network.	 This	 server	 is	 located	 at	 the	main
office	and	is	accessed	through	the	WAN	link.	This	connectivity	issue	affects
all	 users	 at	 the	 branch	 office.	 All	 users	 can	 access	 the	 internet	 and	 other
resources	within	the	branch.

Tapping	into	the	Wire

Because	 the	 problem	 lies	 in	 communication	between	 the	main	 and	branch
offices,	 there	 are	 a	 couple	 of	 places	we	 could	 collect	 data	 to	 start	 tracking
down	the	problem.	The	problem	could	be	with	the	clients	inside	the	branch
office,	so	we’ll	start	by	port	mirroring	one	of	those	computers	to	check	what
it	sees	on	the	wire.	Once	we’ve	collected	that	information,	we	can	use	it	to
point	 toward	other	 collection	 locations	 that	might	help	 solve	 the	problem.
The	 initial	 capture	 file	 obtained	 from	 one	 of	 the	 clients	 is
stranded_clientside.pcapng.

Analysis

As	shown	in	Figure	10-30,	our	first	capture	file	begins	when	the	user	at	the
workstation	address	172.16.16.101	attempts	 to	access	an	application	hosted



on	the	headquarter’s	app	server,	172.16.16.200.	This	capture	contains	only
two	packets.	It	appears	as	though	a	DNS	request	is	sent	to	172.16.16.251	➊
for	the	A	record	➌	for	appserver	➋	in	the	first	packet.	This	is	the	DNS	name
for	the	server	at	172.16.16.200	in	the	central	office.

As	you	can	 see	 in	Figure	10-31,	 the	 response	 to	 this	packet	 is	 a	 server
failure	➊,	which	indicates	that	something	is	preventing	the	DNS	query	from
resolving	successfully.	Notice	that	this	packet	does	not	answer	the	query	➋
since	it	is	an	error	(server	failure).

Figure	10-30:	Communication	begins	with	a	DNS	query	for	the	appserver	A	record.



Figure	10-31:	The	query	response	indicates	a	problem	upstream.

We	now	know	that	the	communication	problem	is	related	to	some	DNS
issue.	Because	the	DNS	queries	at	the	branch	office	are	resolved	by	the	on-
site	DNS	server	at	172.16.16.251,	that’s	our	next	stop.

To	 capture	 the	 appropriate	 traffic	 from	 the	 branch	DNS	 server,	 we’ll
leave	our	sniffer	 in	place	and	simply	change	the	port-mirroring	assignment
so	that	the	DNS	server’s	traffic,	rather	than	the	workstation’s	traffic,	is	now
mirrored	to	our	sniffer.	The	result	is	the	file	stranded_branchdns.pcapng.

As	 shown	 in	 Figure	 10-32,	 this	 capture	 begins	 with	 the	 query	 and
response	we	 saw	 earlier,	 along	with	 one	 additional	 packet.	This	 additional
packet	 looks	 a	 bit	 odd	 because	 it	 is	 attempting	 to	 communicate	 with	 the
primary	DNS	server	at	the	central	office	(172.16.16.250)	➊	on	the	standard
DNS	server	port	53	➌,	but	it	is	not	the	UDP	➋	we’re	used	to	seeing.



Figure	10-32:	This	SYN	packet	uses	port	53	but	is	not	UDP.

To	figure	out	the	purpose	of	this	packet,	recall	our	discussion	of	DNS	in
Chapter	9.	DNS	usually	uses	UDP,	but	it	uses	TCP	when	the	response	to	a
query	exceeds	a	certain	size.	In	that	case,	we’ll	see	some	initial	UDP	traffic
that	 triggers	 the	 TCP	 traffic.	 TCP	 is	 also	 used	 for	 DNS	 during	 a	 zone
transfer,	when	resource	records	are	transferred	between	DNS	servers,	which
is	likely	the	case	here.

The	DNS	 server	 at	 the	 branch	 office	 location	 is	 a	 slave	 to	 the	 DNS
server	 at	 the	 central	 office,	meaning	 that	 it	 relies	 on	 it	 in	 order	 to	 receive
resource	records.	The	application	server	 that	users	 in	 the	branch	office	are
trying	 to	 access	 is	 located	 inside	 the	 central	 office,	 which	 means	 that	 the
central	 office	 DNS	 server	 is	 authoritative	 for	 that	 server.	 For	 the	 branch
office	server	 to	resolve	a	DNS	request	 for	 the	application	server,	 the	DNS
resource	 record	 for	 that	 server	must	 be	 transferred	 from	 the	 central	 office
DNS	server	to	the	branch	office	DNS	server.	This	is	likely	the	source	of	the
SYN	packet	in	this	capture	file.

The	lack	of	response	to	this	SYN	packet	tells	us	that	the	DNS	problem
is	 the	result	of	a	 failed	zone	transfer	between	the	branch	and	central	office
DNS	servers.	Now	we	can	go	one	step	further	by	figuring	out	why	the	zone
transfer	is	failing.	The	possible	culprits	for	the	issue	can	be	narrowed	down
to	the	routers	between	the	offices	or	the	central	office	DNS	server	itself.	To
determine	which	is	at	fault,	we	can	sniff	the	traffic	of	the	central	office	DNS
server	to	see	whether	the	SYN	packet	is	making	it	to	the	server.

I	haven’t	included	a	capture	file	for	the	central	office	DNS	server	traffic
because	 there	was	none.	The	SYN	packet	 never	 reached	 the	 server.	Upon



dispatching	technicians	to	review	the	configuration	of	the	routers	connecting
the	two	offices,	it	was	found	that	inbound	port	53	traffic	on	the	central	office
router	was	configured	to	allow	only	UDP	traffic	and	to	block	inbound	TCP
traffic.	 This	 simple	 misconfiguration	 prevented	 zone	 transfers	 from
occurring	between	servers,	 thus	preventing	clients	within	 the	branch	office
from	resolving	queries	for	devices	in	the	central	office.

Lessons	Learned

You	 can	 learn	 a	 lot	 about	 investigating	 network	 communication	 issues	 by
watching	 crime	 dramas.	 When	 a	 crime	 occurs,	 the	 detectives	 begin	 by
interviewing	those	most	affected.	Leads	that	result	from	that	examination	are
pursued,	and	the	process	continues	until	a	culprit	is	found.

In	this	scenario,	we	began	by	examining	the	target	(the	workstation)	and
established	leads	by	finding	the	DNS	communication	issue.	Our	leads	led	us
to	the	branch	DNS	server,	then	to	the	central	DNS	server,	and	finally	to	the
router,	which	was	the	source	of	the	problem.

When	performing	 analysis,	 try	 thinking	 of	 packets	 as	 clues.	The	 clues
don’t	always	tell	you	who	committed	the	crime,	but	they	often	take	you	to
the	culprit	eventually.

Software	Data	Corruption

tickedoffdeveloper.pcapng

Some	 of	 the	 most	 frequent	 arguments	 in	 IT	 are	 between	 developers	 and
network	administrators.	Developers	always	blame	poor	network	engineering
and	 malfunctioning	 equipment	 for	 program	 errors.	 In	 turn,	 network
administrators	 tend	 to	 blame	 bad	 code	 for	 network	 errors	 and	 slow
communication.

In	this	scenario,	a	programmer	has	developed	an	application	for	tracking
the	sales	at	multiple	stores	and	reporting	back	to	a	central	database.	To	save
bandwidth	during	normal	business	hours,	the	application	does	not	update	in
real	 time.	Data	 is	accumulated	 throughout	 the	day	and	 then	 transmitted	at
night	as	a	comma-separated	value	(CSV)	file	to	be	inserted	into	the	central
database.



This	newly	developed	 application	 isn’t	 functioning	 correctly.	The	 files
sent	 from	 the	 stores	 are	 being	 received	 by	 the	 server,	 but	 the	 data	 being
inserted	into	the	database	is	not	correct.	Sections	are	missing,	data	is	in	the
wrong	place,	and	some	portions	of	the	data	are	missing.	Much	to	the	dismay
of	 the	network	 administrator,	 the	programmer	blames	 the	network	 for	 the
issue.	 They	 are	 convinced	 that	 the	 files	 are	 becoming	 corrupted	 while	 in
transit	 from	 the	 stores	 to	 the	 central	 data	 repository.	 Our	 goal	 is	 to
determine	whether	they	are	right.

Tapping	into	the	Wire

To	collect	the	data	we	need,	we	can	capture	packets	at	one	of	the	stores	or	at
the	central	office.	Because	the	issue	is	affecting	all	the	stores,	it	should	occur
at	the	central	office	if	it	is	network	related—that	is	the	only	common	thread
among	all	stores	(other	than	the	software	itself).

The	network	switches	support	port	mirroring,	so	we’ll	mirror	 the	port
the	 server	 is	 plugged	 into	 and	 sniff	 its	 traffic.	 The	 traffic	 capture	 will	 be
isolated	to	a	single	instance	of	a	store	uploading	its	CSV	file	to	the	collection
server.	This	result	is	the	capture	file	tickedoffdeveloper.pcapng.

Analysis

We	 know	 nothing	 about	 the	 application	 the	 programmer	 has	 developed,
other	 than	 the	 basic	 flow	of	 information	on	 the	network.	The	 capture	 file
appears	to	start	with	some	FTP	traffic,	so	we’ll	investigate	to	see	whether	it
is	indeed	the	mechanism	that	is	transporting	this	file.

Looking	 at	 the	 packet	 list	 first	 (Figure	 10-33),	 we	 can	 see	 that
172.16.16.128	➊	 initiates	 communication	 to	 172.16.16.121	➋	 with	 a	TCP
handshake.	Since	172.16.16.128	initiates	the	communication,	we	can	assume
that	 it	 is	 the	 client	 and	 that	 172.16.16.121	 is	 the	 server	 that	 compiles	 and
processes	 the	 data.	 Following	 the	 handshake	 completion,	 we	 begin	 seeing
FTP	requests	from	the	client	and	responses	from	the	server	➌.



Figure	10-33:	The	initial	communication	helps	identify	the	client	and	server.

We	know	 that	 some	 transfer	of	 data	 should	be	happening	here,	 so	we
can	 use	 our	 knowledge	 of	 FTP	 to	 locate	 the	 packet	 where	 this	 transfer
begins.	The	FTP	connection	and	data	transfer	are	initiated	by	the	client,	so
from	172.16.16.128	we	should	see	the	FTP	STOR	command,	which	is	used	to
upload	data	 to	an	FTP	server.	The	easiest	way	 to	 find	 this	 command	 is	 to
build	a	filter.

Because	this	capture	file	is	littered	with	FTP	request	commands,	rather
than	 sorting	 through	 the	 hundreds	 of	 protocols	 and	 options	 in	 the
expression	builder,	we	can	build	the	filter	we	need	directly	from	the	Packet
List	 pane.	To	do	 so,	we	 first	need	 to	 select	 a	packet	with	 an	FTP	 request
command	present.	We’ll	choose	packet	5,	since	it’s	near	the	top	of	our	list.
Then	 expand	 the	 FTP	 section	 in	 the	 Packet	Details	 pane	 and	 expand	 the
USER	section.	Right-click	the	Request	Command:	USER	field	and	select
Prepare	a	Filter.	Finally,	choose	Selected.

This	will	prepare	a	filter	for	all	packets	that	contain	the	FTP USER	request
command	and	put	it	in	the	filter	dialog.	Next,	as	shown	in	Figure	10-34,	edit
the	filter	by	replacing	the	word	USER	with	the	word	STOR	➊.

Figure	10-34:	This	filter	helps	identify	where	data	transfer	begins.

We	 could	 narrow	 down	 the	 filter	 further	 by	 providing	 the	 client’s	 IP
address	and	specifying	it	as	the	source	of	the	connection	by	adding	&& ip.src
== 172.16.16.128	to	the	filter,	but	since	this	capture	file	is	already	isolated	to	a
single	client,	that	isn’t	necessary	here.

Now	 apply	 this	 filter	 by	 pressing	ENTER,	 and	 you’ll	 see	 that	 only	 one
instance	of	the	STOR	command	exists	in	the	capture	file,	at	packet	64	➋.

Now	that	we	know	where	data	transfer	begins,	click	the	packet	to	select
it	and	clear	 the	 filter	by	clicking	 the	X	button	above	 the	Packet	List	pane.
Your	screen	should	now	show	all	the	packets	with	packet	64	selected.

Examining	 the	 capture	 file	 beginning	with	 packet	 64,	we	 see	 that	 this
packet	specifies	the	transfer	of	the	file	store4829-03222010.csv	➊,	as	shown	in
Figure	10-35.



Figure	10-35:	The	CSV	file	is	being	transferred	using	FTP.

The	 packets	 following	 the	 STOR	 command	 use	 a	 different	 port	 but	 are
identified	as	part	of	an	FTP-DATA	transmission.	We’ve	verified	that	data	is
being	 transferred,	but	we	have	yet	 to	 establish	whether	 the	programmer	 is
right	or	wrong.	To	do	so,	we	need	to	show	whether	the	contents	of	the	file
are	 intact	 after	 traversing	 the	 network,	 so	 we’ll	 proceed	 to	 extract	 the
transferred	file	from	the	captured	packets.

When	a	file	is	transferred	across	a	network	in	an	unencrypted	format,	it
is	 broken	 down	 into	 segments	 and	 reassembled	 at	 its	 destination.	 In	 this
scenario,	we	 captured	 packets	 as	 they	 reached	 their	 destination	 but	 before
they	were	reassembled.	The	data	is	all	there;	we	simply	need	to	reassemble	it
by	extracting	the	file	as	a	data	stream.	To	perform	the	reassembly,	select	any
of	 the	 packets	 in	 the	 FTP-DATA	 stream	 (such	 as	 packet	 66)	 and	 click
Follow	TCP	Stream.	The	results	are	displayed	as	shown	in	Figure	10-36.
This	looks	like	a	normal	CSV-formatted	text	file	containing	sales	order	data.

The	data	appears	because	it	 is	being	transferred	in	plaintext	over	FTP,
but	 we	 can’t	 be	 sure	 that	 the	 file	 is	 intact	 based	 on	 the	 stream	 alone.	To
reassemble	the	data	so	as	to	extract	it	in	its	original	format,	click	the	Save	As
button	and	specify	the	name	of	the	file	as	displayed	in	packet	64.	Then	click
Save.

The	 result	of	 this	 save	operation	 should	be	a	CSV	 file	 that	 is	 an	exact
byte-level	copy	of	the	file	originally	transferred	from	the	store	system.	The
file	can	be	verified	by	comparing	the	MD5	hash	of	the	original	file	with	that
of	 the	 extracted	 file.	 The	 MD5	 hashes	 should	 be	 the	 same,	 as	 shown	 in
Figure	10-37.



Figure	10-36:	The	TCP	stream	shows	what	appears	to	be	the	data	being	transferred.



Figure	10-37:	The	MD5	hashes	of	the	original	file	and	the	extracted	file	are	equivalent.

Once	 the	 files	 are	 compared,	 we	 can	 state	 that	 the	 network	 is	 not	 to
blame	for	the	database	corruption	occurring	within	the	application.	The	file
transferred	 from	the	store	 to	 the	collection	server	 is	 intact	when	 it	 reaches
the	server,	so	any	corruption	must	be	occurring	when	the	file	is	processed	by
the	application	on	the	server	side.

Lessons	Learned

One	 great	 thing	 about	 packet-level	 analysis	 is	 that	 you	 don’t	 need	 to	 deal
with	the	clutter	of	applications.	Poorly	coded	applications	greatly	outnumber
the	good	ones,	but	at	the	packet	level,	none	of	that	matters.	In	this	case,	the
programmer	 was	 concerned	 about	 all	 of	 the	mysterious	 components	 their
application	was	dependent	upon,	but	at	the	end	of	the	day,	their	complicated



data	transfer	that	took	hundreds	of	lines	of	code	is	still	no	more	than	FTP,
TCP,	and	IP.	Using	what	we	know	about	these	basic	protocols,	we	were	able
to	ensure	the	communication	process	was	flowing	correctly	and	even	extract
files	to	prove	the	soundness	of	the	network.	It’s	crucial	to	remember	that	no
matter	how	complex	the	issue	at	hand,	it	still	comes	down	to	packets.

Final	Thoughts
In	 this	 chapter,	 we’ve	 covered	 several	 scenarios	 in	 which	 packet	 analysis
allowed	 us	 to	 gain	 a	 better	 understanding	 of	 problematic	 communication.
Using	basic	analysis	of	common	protocols,	we	were	able	to	track	down	and
solve	network	problems	in	a	timely	manner.	While	you	may	not	encounter
exactly	 the	 same	 scenarios	 on	 your	 network,	 the	 analysis	 techniques
presented	 here	 should	 prove	 useful	 as	 you	 analyze	 your	 own	 unique
problems.



11
FIGHTING	A	SLOW	NETWORK

As	a	network	administrator,	much	of	your	time	will	be
spent	 fixing	 computers	 and	 services	 that	 are	 running
slower	than	they	should	be.	But	just	because	someone
says	 that	 the	network	 is	 running	 slowly	doesn’t	mean
that	the	network	is	to	blame.

Before	you	begin	to	tackle	a	slow	network,	you	first	need	to	determine
whether	the	network	is	in	fact	running	slowly.	You’ll	learn	how	to	do	that	in
this	chapter.

We’ll	begin	by	discussing	 the	error-recovery	 and	 flow-control	 features
of	 TCP.	 Then	 we’ll	 explore	 how	 to	 detect	 the	 source	 of	 slowness	 on	 a
network.	Finally,	we’ll	 look	at	ways	of	baselining	networks	and	 the	devices
and	services	 that	run	on	them.	Once	you	have	completed	this	chapter,	you
should	be	much	better	equipped	to	identify,	diagnose,	and	troubleshoot	slow
networks.

NOTE

Multiple	techniques	can	be	used	to	troubleshoot	slow	networks.	I’ve	chosen	to
focus	primarily	on	TCP	because	most	of	the	time,	it	is	all	you’ll	have	to	work
with.	TCP	allows	you	to	perform	passive	retrospective	analysis	rather	than



generate	additional	traffic	(unlike	ICMP).

TCP	Error-Recovery	Features
TCP’s	 error-recovery	 features	 are	 our	 best	 tools	 for	 locating,	 diagnosing,
and	 eventually	 repairing	 high	 latency	 on	 a	 network.	 In	 terms	 of	 computer
networking,	latency	is	a	measure	of	delay	between	a	packet’s	transmission	and
its	receipt.

Latency	 can	 be	 measured	 as	 one-way	 (from	 a	 single	 source	 to	 a
destination)	or	as	round-trip	(from	a	source	to	a	destination	and	back	to	the
original	 source).	 When	 communication	 between	 devices	 is	 fast,	 and	 the
amount	of	time	it	takes	a	packet	to	get	from	one	point	to	another	is	low,	the
communication	 is	 said	 to	have	 low	 latency.	Conversely,	when	packets	 take	a
significant	 amount	 of	 time	 to	 travel	 between	 a	 source	 and	 destination,	 the
communication	is	said	to	have	high	latency.	High	latency	is	the	number	one
enemy	of	all	network	administrators	who	value	their	sanity	(and	their	jobs).

In	 Chapter	 8,	 we	 discussed	 how	 TCP	 uses	 sequence	 and
acknowledgment	numbers	to	ensure	the	reliable	delivery	of	packets.	In	this
chapter,	we’ll	 look	 at	 sequence	 and	 acknowledgment	numbers	 again	 to	 see
how	TCP	responds	when	high	latency	causes	these	numbers	to	be	received
out	of	sequence	(or	not	received	at	all).

TCP	Retransmissions

tcp_retransmissions.pcapng

The	ability	of	a	host	to	retransmit	packets	is	one	of	TCP’s	most	fundamental
error-recovery	features.	It	is	designed	to	combat	packet	loss.

There	are	many	possible	causes	of	packet	loss,	including	malfunctioning
applications,	routers	under	a	heavy	traffic	load,	or	temporary	service	outages.
Things	move	fast	at	the	packet	level,	and	often	the	packet	loss	is	temporary,
so	it’s	crucial	for	TCP	to	be	able	to	detect	and	recover	from	packet	loss.

The	primary	mechanism	for	determining	whether	the	retransmission	of
a	packet	is	necessary	is	the	retransmission	timer.	This	timer	is	responsible	for
maintaining	 a	 value	 called	 the	 retransmission	 timeout	 (RTO).	 Whenever	 a
packet	is	transmitted	using	TCP,	the	retransmission	timer	starts.	This	timer



stops	when	an	ACK	for	that	packet	is	received.	The	time	between	the	packet
transmission	 and	 receipt	 of	 the	 ACK	 packet	 is	 called	 the	 round-trip	 time
(RTT).	 Several	 of	 these	 times	 are	 averaged,	 and	 that	 average	 is	 used	 to
determine	the	final	RTO	value.

Until	 an	RTO	 value	 is	 determined,	 the	 transmitting	 operating	 system
relies	on	 its	default	 configured	RTT	setting,	which	 is	 issued	 for	 the	 initial
communication	between	hosts.	This	 is	 then	adjusted	based	on	 the	RTT	of
received	packets	to	determine	the	RTO	value.

Once	the	RTO	value	has	been	determined,	 the	retransmission	timer	 is
used	 on	 every	 transmitted	 packet	 to	 determine	 whether	 packet	 loss	 has
occurred.	Figure	11-1	illustrates	the	TCP	retransmission	process.

Figure	11-1:	Conceptual	view	of	the	TCP	retransmission	process

When	a	packet	is	sent,	but	the	recipient	has	not	sent	back	a	TCP	ACK
packet,	 the	 transmitting	host	 assumes	 that	 the	original	packet	was	 lost	 and
retransmits	 the	original	packet.	When	the	retransmission	 is	 sent,	 the	RTO
value	is	doubled;	if	no	ACK	packet	is	received	before	that	value	is	reached,
another	retransmission	will	occur.	If	this	retransmission	also	does	not	receive



an	 ACK	 response,	 the	 RTO	 value	 is	 doubled	 again.	 This	 process	 will
continue,	with	the	RTO	value	being	doubled	for	each	retransmission,	until
an	ACK	packet	is	received	or	until	the	sender	reaches	the	maximum	number
of	retransmission	attempts	 it	 is	configured	to	send.	More	details	about	 this
process	are	described	in	RFC6298.

The	maximum	number	of	retransmission	attempts	depends	on	the	value
configured	in	the	transmitting	operating	system.	By	default,	Windows	hosts
make	a	maximum	of	five	retransmission	attempts.	Most	Linux	hosts	default
to	a	maximum	of	15	attempts.	This	option	is	configurable	in	either	operating
system.

For	 an	 example	 of	 TCP	 retransmission,	 open	 the	 file
tcp_retransmissions.pcapng,	 which	 contains	 six	 packets.	 The	 first	 packet	 is
shown	in	Figure	11-2.

Figure	11-2:	A	simple	TCP	packet	containing	data

This	packet	is	a	TCP	PSH/ACK	packet	➋	containing	648	bytes	of	data
➌	that	are	sent	from	10.3.30.1	to	10.3.71.7	➊.	This	is	a	typical	data	packet.

Under	 normal	 circumstances,	 you	 would	 expect	 to	 see	 a	 TCP	 ACK
packet	 in	 response	 fairly	 soon	 after	 the	 first	 packet	 is	 sent.	 In	 this	 case,



however,	the	next	packet	is	a	retransmission.	You	can	tell	this	by	looking	at
the	 packet	 in	 the	 Packet	 List	 pane.	 The	 Info	 column	 will	 clearly	 say	 [TCP
Retransmission],	 and	 the	 packet	 will	 appear	 with	 red	 text	 on	 a	 black
background.	 Figure	 11-3	 shows	 examples	 of	 retransmissions	 listed	 in	 the
Packet	List	pane.

Figure	11-3:	Retransmissions	in	the	Packet	List	pane

You	 can	 also	 determine	 whether	 a	 packet	 is	 a	 retransmission	 by
examining	it	in	the	Packet	Details	pane,	as	shown	in	Figure	11-4.

In	 the	 Packet	 Details	 pane,	 notice	 that	 the	 retransmission	 packet	 has
some	additional	information	included	under	the	SEQ/ACK	analysis	heading
➊.	This	useful	information	is	provided	by	Wireshark	and	is	not	contained	in
the	 packet	 itself.	 The	 SEQ/ACK	 analysis	 tells	 us	 that	 this	 is	 indeed	 a
retransmission	➋,	that	the	RTO	value	is	0.206	seconds	➌,	and	that	the	RTO
is	based	on	the	delta	time	from	packet	1	➍.



Figure	11-4:	An	individual	retransmission	packet

Note	that	this	packet	is	the	same	as	the	original	packet	(other	than	the
IP	 identification	and	Checksum	 fields).	To	verify	 this,	 compare	 the	Packet
Bytes	pane	of	this	retransmitted	packet	with	the	original	one.

Examination	of	the	remaining	packets	should	yield	similar	results,	with
the	only	differences	between	the	packets	 found	in	the	IP	 identification	and
Checksum	fields	and	in	the	RTO	value.	To	visualize	the	time	lapse	between
each	packet,	look	at	the	Time	column	in	the	Packet	List	pane,	as	shown	in
Figure	11-5.	Here,	you	see	exponential	growth	in	time	as	the	RTO	value	is
doubled	after	each	retransmission.

The	TCP	 retransmission	 feature	 is	 used	 by	 the	 transmitting	 device	 to
detect	 and	 recover	 from	 packet	 loss.	 Next,	 we’ll	 examine	 TCP	 duplicate
acknowledgments,	a	feature	that	the	data	recipient	uses	to	detect	and	recover
from	packet	loss.



Figure	11-5:	The	Time	column	shows	the	increase	in	RTO	value.

TCP	Duplicate	Acknowledgments	and	Fast	Retransmissions

tcp_dupack.pcapng

A	duplicate	ACK	is	a	TCP	packet	sent	from	a	recipient	when	that	recipient
receives	 packets	 that	 are	 out	 of	 order.	 TCP	 uses	 the	 sequence	 and
acknowledgment	number	fields	within	its	header	to	reliably	ensure	that	data
is	received	and	reassembled	in	the	same	order	in	which	it	was	sent.

NOTE

The	proper	term	for	a	TCP	packet	is	actually	TCP	segment,	but	most	people
refer	to	it	as	a	packet.

When	a	new	TCP	connection	is	established,	one	of	the	most	important
pieces	of	 information	exchanged	during	 the	handshake	process	 is	 an	 initial
sequence	number	(ISN).	Once	the	ISN	is	set	for	each	side	of	the	connection,
each	 subsequently	 transmitted	 packet	 increments	 the	 sequence	 number	 by
the	size	of	its	data	payload.

Consider	a	host	that	has	an	ISN	of	5000	and	sends	a	500-byte	packet	to
a	 recipient.	 Once	 this	 packet	 has	 been	 received,	 the	 recipient	 host	 will
respond	with	a	TCP	ACK	packet	with	an	acknowledgment	number	of	5500,
based	on	the	following	formula:

Sequence	Number	In	+	Bytes	of	Data	Received	=	Acknowledgment	Number	Out

As	a	result	of	this	calculation,	the	acknowledgment	number	returned	to
the	transmitting	host	is	the	next	sequence	number	that	the	recipient	expects
to	receive.	An	example	of	this	can	be	seen	in	Figure	11-6.



Figure	11-6:	TCP	sequence	and	acknowledgment	numbers

The	 detection	 of	 packet	 loss	 by	 the	 data	 recipient	 is	 made	 possible
through	 the	 sequence	 numbers.	 As	 the	 recipient	 tracks	 the	 sequence
numbers	it	is	receiving,	it	can	determine	when	it	receives	sequence	numbers
that	are	out	of	order.

When	the	recipient	receives	an	unexpected	sequence	number,	it	assumes
that	 a	 packet	 has	 been	 lost	 in	 transit.	 To	 reassemble	 data	 properly,	 the
recipient	must	have	 the	missing	packet,	 so	 it	 resends	 the	ACK	packet	 that
contains	 the	 lost	 packet’s	 expected	 sequence	 number	 in	 order	 to	 elicit	 a
retransmission	of	that	packet	from	the	transmitting	host.

When	 the	 transmitting	 host	 receives	 three	 duplicate	 ACKs	 from	 the
recipient,	 it	 assumes	 that	 the	 packet	 was	 indeed	 lost	 in	 transit	 and
immediately	 sends	 a	 fast	 retransmission.	 Once	 a	 fast	 retransmission	 is
triggered,	 all	 other	 packets	 being	 transmitted	 are	 queued	 until	 the	 fast
retransmission	packet	is	sent.	This	process	is	depicted	in	Figure	11-7.



Figure	11-7:	Duplicate	ACKs	from	the	recipient	result	in	a	fast	retransmission.

You’ll	find	an	example	of	duplicate	ACKs	and	fast	retransmissions	in	the
file	tcp_dupack.pcapng.	The	first	packet	in	this	capture	is	shown	in	Figure	11-
8.



Figure	11-8:	The	ACK	showing	the	next	expected	sequence	number

This	packet,	a	TCP	ACK	sent	from	the	data	recipient	(172.31.136.85)	to
the	transmitter	 (195.81.202.68)	➊,	has	an	acknowledgment	of	 the	data	sent
in	the	previous	packet	that	is	not	included	in	this	capture	file.

NOTE

By	default,	Wireshark	uses	relative	sequence	numbers	to	make	the	analysis	of
these	numbers	easier,	but	the	examples	and	screenshots	in	the	next	few	sections
do	not	use	this	feature.	To	turn	off	this	feature,	select	Edit	▶	Preferences.	In
the	Preferences	window,	select	Protocols	and	then	the	TCP	section.	Then
uncheck	the	box	next	to	Relative	sequence	numbers.

The	 acknowledgment	 number	 in	 this	 packet	 is	 1310973186	 ➋.	 This
should	match	the	sequence	number	in	the	next	packet	received,	as	shown	in
Figure	11-9.

Figure	11-9:	The	sequence	number	of	this	packet	is	not	what	was	expected.

Unfortunately	for	us	and	our	recipient,	the	sequence	number	of	the	next
packet	 is	 1310984130	➊,	 which	 is	 not	 what	 we	 expect.	 This	 out-of-order
packet	 indicates	 that	 the	expected	packet	was	 somehow	 lost	 in	 transit.	The
recipient	 host	 notices	 that	 this	 packet	 is	 out	 of	 sequence	 and	 sends	 a



duplicate	ACK	in	the	third	packet	of	this	capture,	as	shown	in	Figure	11-10.
You	 can	 determine	 that	 this	 is	 a	 duplicate	 ACK	 packet	 by	 examining

either	of	the	following:

•					The	Info	column	in	the	Packet	Details	pane.	The	packet	should	appear
as	red	text	on	a	black	background.

•					The	Packet	Details	pane	under	the	SEQ/ACK	analysis	heading	(Figure
11-10).	If	you	expand	this	heading,	you’ll	find	that	the	packet	is	listed	as
a	duplicate	ACK	of	packet	1	➊.

Figure	11-10:	The	first	duplicate	ACK	packet

The	next	several	packets	continue	this	process,	as	shown	in	Figure	11-
11.

Figure	11-11:	Additional	duplicate	ACKs	are	generated	due	to	out-of-order	packets.

The	fourth	packet	in	the	capture	file	is	another	chunk	of	data	sent	from
the	 transmitting	host	with	 the	wrong	 sequence	number	➊.	As	 a	 result,	 the



recipient	host	sends	its	second	duplicate	ACK	➋.	One	more	packet	with	the
wrong	 sequence	number	 is	 received	 by	 the	 recipient	➌.	That	 prompts	 the
transmission	of	the	third	and	final	duplicate	ACK	➍.

As	soon	as	the	transmitting	host	receives	the	third	duplicate	ACK	from
the	recipient,	 it	 is	forced	to	halt	all	packet	transmission	and	resend	the	lost
packet.	Figure	11-12	shows	the	fast	retransmission	of	the	lost	packet.

The	 retransmission	 packet	 can	 once	 again	 be	 found	 through	 the	 Info
column	 in	 the	 Packet	 List	 pane.	 As	 with	 previous	 examples,	 the	 packet	 is
clearly	labeled	with	red	text	on	a	black	background.	The	SEQ/ACK	analysis
section	of	this	packet	(Figure	11-12)	tells	us	that	this	is	suspected	to	be	a	fast
retransmission	➊.	 (Again,	 the	 information	 that	 labels	 this	 packet	 as	 a	 fast
retransmission	 is	not	 a	 value	 set	 in	 the	packet	 itself	but	 rather	 a	 feature	of
Wireshark.)	The	final	packet	in	the	capture	is	an	ACK	packet	acknowledging
receipt	of	the	fast	retransmission.

Figure	11-12:	Three	duplicate	ACKs	cause	this	fast	retransmission	of	the	lost	packet.

NOTE

One	feature	to	consider	that	may	affect	the	flow	of	data	in	TCP
communications	in	which	packet	loss	is	present	is	the	Selective



Acknowledgment	feature.	In	the	packet	capture	we	just	examined,	Selective
ACK	was	negotiated	as	an	enabled	feature	during	the	initial	three-way
handshake	process.	As	a	result,	whenever	a	packet	is	lost	and	a	duplicate	ACK
received,	only	the	lost	packet	has	to	be	retransmitted,	even	though	other	packets
were	received	successfully	after	the	lost	packet.	Had	Selective	ACK	not	been
enabled,	every	packet	occurring	after	the	lost	packet	would	have	had	to	be
retransmitted	as	well.	Selective	ACK	makes	data	loss	recovery	much	more
efficient.	Because	most	modern	TCP/IP	stack	implementations	support
Selective	ACK,	you	will	find	that	this	feature	is	usually	implemented.

TCP	Flow	Control
Retransmissions	and	duplicate	ACKs	are	reactive	TCP	functions	designed	to
recover	from	packet	loss.	TCP	would	be	a	poor	protocol	indeed	if	it	didn’t
include	some	form	of	proactive	method	for	preventing	packet	loss.

TCP	implements	a	sliding-window	mechanism	to	detect	when	packet	loss
may	occur	and	adjust	the	rate	of	data	transmission	to	prevent	it.	The	sliding-
window	mechanism	 leverages	 the	 data	 recipient’s	 receive	window	 to	 control
the	flow	of	data.

The	receive	window	is	a	value	specified	by	the	data	recipient	and	stored
in	 the	TCP	header	 (in	 bytes)	 that	 tells	 the	 transmitting	 device	 how	much
data	the	recipient	is	willing	to	store	in	its	TCP	buffer	space.	This	buffer	space
is	where	data	is	stored	temporarily	until	it	can	be	passed	up	the	stack	to	the
application-layer	protocol	waiting	to	process	it.	As	a	result,	the	transmitting
host	 can	 send	only	 the	 amount	of	data	 specified	 in	 the	Window	 size	 value
field	at	one	time.	For	the	transmitter	to	send	more	data,	the	recipient	must
send	 an	 acknowledgment	 that	 the	 previous	 data	was	 received.	 It	 also	must
clear	 TCP	 buffer	 space	 by	 processing	 the	 data	 that	 is	 occupying	 that
position.	Figure	11-13	illustrates	how	the	receive	window	works.



Figure	11-13:	The	receive	window	keeps	the	data	recipient	from	getting	overwhelmed.

In	 Figure	 11-13,	 the	 client	 is	 sending	 data	 to	 a	 server	 that	 has
communicated	a	receive	window	size	of	5,000	bytes.	The	client	sends	2,500
bytes,	 reducing	 the	 server’s	 buffer	 space	 to	 2,500	 bytes,	 and	 then	 sends
another	 2,000	 bytes,	 further	 reducing	 the	 buffer	 to	 500	 bytes.	 The	 server
sends	an	acknowledgment	of	 this	data,	and	after	 it	processes	 the	data	 in	 its
buffer,	it	again	has	an	empty	buffer	available.	This	process	repeats,	with	the
client	 sending	 3,000	 bytes	 and	 another	 1,000	 bytes,	 reducing	 the	 server’s
buffer	 to	 1,000	 bytes.	 The	 client	 once	 more	 acknowledges	 this	 data	 and
processes	the	contents	of	its	buffer.

Adjusting	the	Window	Size

This	 process	 of	 adjusting	 the	 window	 size	 is	 fairly	 clear-cut,	 but	 it	 isn’t
always	 perfect.	 Whenever	 data	 is	 received	 by	 the	 TCP	 stack,	 an
acknowledgment	 is	 generated	 and	 sent	 in	 reply,	 but	 the	data	placed	 in	 the
recipient’s	buffer	is	not	always	processed	immediately.

When	a	busy	server	is	processing	packets	from	multiple	clients,	it	could
quite	possibly	be	slow	in	clearing	its	buffer	and	thus	be	unable	to	make	room
for	new	data.	Without	a	means	of	flow	control,	a	full	buffer	could	lead	to	lost
packets	and	data	corruption.	Fortunately,	when	a	server	becomes	too	busy	to
process	data	at	the	rate	its	receive	window	is	advertising,	it	can	adjust	the	size



of	the	window.	It	does	this	by	decreasing	the	window	size	value	in	the	TCP
header	of	the	ACK	packet	it	is	sending	back	to	the	hosts	that	are	sending	it
data.	Figure	11-14	shows	an	example	of	this.

Figure	11-14:	The	window	size	can	be	adjusted	when	the	server	becomes	busy.

In	 Figure	 11-14,	 the	 server	 starts	 with	 an	 advertised	 window	 size	 of
5,000	bytes.	The	client	sends	2,000	bytes,	followed	by	another	2,000	bytes,
leaving	only	1,000	bytes	of	buffer	space	available.	The	server	realizes	that	its
buffer	 is	 filling	up	quickly	 and	 knows	 that	 if	 data	 transfer	 keeps	 up	 at	 this
rate,	packets	will	soon	be	lost.	To	avoid	such	a	mishap,	the	server	sends	an
acknowledgment	 to	 the	client	with	an	updated	window	size	of	1,000	bytes.
The	 client	 responds	 by	 sending	 less	 data,	 and	 now	 the	 rate	 at	 which	 the
server	 can	 process	 its	 buffer	 contents	 allows	 data	 to	 flow	 in	 a	 constant
manner.

The	resizing	process	works	both	ways.	When	the	server	can	process	data
at	a	faster	rate,	it	can	send	an	ACK	packet	with	a	larger	window	size.

Halting	Data	Flow	with	a	Zero	Window	Notification

Due	 to	 a	 lack	 of	 memory,	 a	 lack	 of	 processing	 capability,	 or	 another
problem,	 a	 server	 may	 no	 longer	 process	 data	 sent	 from	 a	 client.	 Such	 a
stoppage	could	result	in	dropped	packets	and	a	halting	of	the	communication



process,	but	the	receive	window	can	minimize	negative	effects.
When	 this	 situation	 arises,	 a	 server	 can	 send	 a	 packet	 that	 contains	 a

window	 size	 of	 zero.	When	 the	 client	 receives	 this	 packet,	 it	will	 halt	 any
data	transmission	but	will	sometimes	keep	the	connection	to	the	server	open
with	the	transmission	of	keep-alive	packets.	Keep-alive	packets	can	be	sent	by
the	 client	 at	 regular	 intervals	 to	 check	 the	 status	 of	 the	 server’s	 receive
window.	Once	 the	 server	 can	 begin	 processing	 data	 again,	 it	 will	 respond
with	a	nonzero	window	size,	and	communication	will	resume.	Figure	11-15
illustrates	an	example	of	zero	window	notification.

Figure	11-15:	Data	transfer	stops	when	the	window	size	is	set	to	0	bytes.

In	 Figure	 11-15,	 the	 server	 begins	 receiving	 data	 with	 a	 5,000-byte
window	size.	After	receiving	a	total	of	4,000	bytes	of	data	from	the	client,	the
server	begins	experiencing	a	very	heavy	processor	load,	and	it	can	no	longer
process	 any	 data	 from	 the	 client.	The	 server	 then	 sends	 a	 packet	with	 the
Window	size	value	 field	 set	 to	0.	The	client	halts	 transmission	of	data	and
sends	 a	 keep-alive	 packet.	After	 receiving	 the	 keep-alive	 packet,	 the	 server
responds	with	a	packet	notifying	the	client	that	it	can	now	receive	data	and
that	its	window	size	is	1,000	bytes.	The	client	resumes	sending	data	but	at	a
slower	rate	than	before.

The	TCP	Sliding	Window	in	Practice



tcp_zerowindow	recovery.pcapng	tcp_zerowindow	dead.pcapng

Having	 covered	 the	 theory	 behind	 the	TCP	 sliding	 window,	 we	 will	 now
examine	it	in	the	capture	file	tcp_zerowindowrecovery.pcapng.

In	 this	 file,	 we	 begin	 with	 several	 TCP	 ACK	 packets	 traveling	 from
192.168.0.20	 to	 192.168.0.30.	 The	 main	 value	 of	 interest	 to	 us	 is	 the
Window	size	value	field,	which	can	be	seen	in	both	the	Info	column	of	the
Packet	List	pane	and	in	the	TCP	header	in	the	Packet	Details	pane.	You	can
see	 immediately	 that	 this	 field’s	value	decreases	over	 the	course	of	 the	 first
three	packets,	as	shown	in	Figure	11-16.

Figure	11-16:	The	window	size	of	these	packets	is	decreasing.

The	window	size	value	goes	from	8,760	bytes	in	the	first	packet	to	5,840
bytes	in	the	second	packet	and	then	2,920	bytes	in	the	third	packet	➋.	This
lowering	of	the	window	size	value	is	a	classic	 indicator	of	 increased	latency
from	the	host.	Notice	in	the	Time	column	that	this	happens	very	quickly	➊.
When	the	window	size	is	lowered	this	fast,	it’s	common	for	the	window	size
to	drop	to	zero,	which	is	exactly	what	happens	in	the	fourth	packet,	as	shown
in	Figure	11-17.



Figure	11-17:	This	zero	window	packet	says	that	the	host	cannot	accept	any	more	data.

The	fourth	packet	is	also	being	sent	from	192.168.0.20	to	192.168.0.30,
but	its	purpose	is	to	tell	192.168.0.30	that	it	can	no	longer	receive	any	data.
The	0	value	is	seen	in	the	TCP	header	➊.	Wireshark	also	tells	us	that	this	is
a	zero	window	packet	in	the	Info	column	of	the	Packet	List	pane	and	under
the	SEQ/ACK	analysis	section	of	the	TCP	header	➋.

Once	this	zero	window	packet	is	sent,	the	device	at	192.168.0.30	will	not
send	 any	 more	 data	 until	 it	 receives	 a	 window	 update	 from	 192.168.0.20
notifying	 it	 that	 the	 window	 size	 has	 increased.	 Luckily	 for	 us,	 the	 issue
causing	the	zero	window	condition	 in	this	capture	file	was	only	temporary.
So,	a	window	update	is	sent	in	the	next	packet,	shown	in	Figure	11-18.

In	this	case,	the	window	size	is	increased	to	a	very	healthy	64,240	bytes
➊.	Wireshark	once	again	lets	us	know	that	this	is	a	window	update	under	the
SEQ/ACK	analysis	heading.

Once	the	update	packet	 is	received,	 the	host	at	192.168.0.30	can	begin
sending	data	again,	as	it	does	in	packets	6	and	7.	This	entire	period	of	halted
data	transmission	takes	place	very	quickly.	Had	it	lasted	only	slightly	longer,
it	could	have	caused	a	potential	hiccup	on	the	network,	resulting	in	a	slower
or	failed	data	transfer.



Figure	11-18:	A	TCP	window	update	packet	lets	the	other	host	know	it	can	begin	transmitting
again.

For	 one	 last	 look	 at	 the	 sliding	 window,	 examine
tcp_zerowindowdead.pcapng.	The	first	packet	in	this	capture	is	normal	HTTP
traffic	 being	 sent	 from	 195.81.202.68	 to	 172.31.136.85.	 The	 packet	 is
immediately	 followed	 with	 a	 zero	 window	 packet	 sent	 back	 from
172.31.136.85,	as	shown	in	Figure	11-19.



Figure	11-19:	A	zero	window	packet	halts	data	transfer.

This	looks	very	similar	to	the	zero	window	packet	shown	in	Figure	11-
17,	 but	 the	 result	 is	much	 different.	 Rather	 than	 seeing	 a	 window	 update
from	the	172.31.136.85	host	and	the	resumption	of	communication,	we	see	a
keep-alive	packet,	as	shown	in	Figure	11-20.



Figure	11-20:	This	keep-alive	packet	ensures	the	zero	window	host	is	still	alive.

This	 packet	 is	 marked	 as	 a	 keep-alive	 by	 Wireshark	 under	 the
SEQ/ACK	analysis	section	of	the	TCP	header	in	the	Packet	Details	pane	➊.
The	Time	column	tells	us	that	this	packet	was	sent	3.4	seconds	after	the	last
received	 packet.	This	 process	 continues	 several	more	 times,	with	 one	 host
sending	a	zero	window	packet	and	the	other	sending	a	keep-alive	packet,	as
shown	in	Figure	11-21.

Figure	11-21:	The	host	and	client	continue	to	send	zero	window	and	keep-alive	packets,
respectively.

These	keep-alive	packets	occur	at	intervals	of	3.4,	6.8,	and	13.5	seconds
➊.	This	process	can	go	on	for	quite	a	long	time,	depending	on	the	operating
systems	 of	 the	 communicating	 devices.	 As	 you	 can	 see	 by	 adding	 up	 the
values	 in	the	Time	column,	the	connection	is	halted	for	nearly	25	seconds.
Imagine	attempting	to	authenticate	with	a	domain	controller	or	download	a
file	from	the	internet	while	experiencing	a	25-second	delay—unacceptable!



Learning	from	TCP	Error-Control	and	Flow-Control
Packets
Let’s	 put	 retransmission,	 duplicate	 ACKs,	 and	 the	 sliding-window
mechanism	into	some	context.	Here	are	a	 few	notes	to	keep	 in	mind	when
troubleshooting	latency	issues.

Retransmission	Packets
Retransmissions	occur	because	the	client	has	detected	that	the	server	is
not	receiving	the	data	it’s	sending.	Therefore,	depending	on	which	side
of	 the	 communication	 you	 are	 analyzing,	 you	 may	 never	 see
retransmissions.	If	you	are	capturing	data	from	the	server,	and	it	is	truly
not	receiving	the	packets	being	sent	and	retransmitted	from	the	client,
you	 may	 be	 in	 the	 dark	 because	 you	 won’t	 see	 the	 retransmission
packets.	 If	 you	 suspect	 that	 you	 are	 the	 victim	 of	 packet	 loss	 on	 the
server	 side,	 consider	 attempting	 to	 capture	 traffic	 from	 the	 client	 (if
possible)	so	that	you	can	see	whether	retransmission	packets	are	present.

Duplicate	ACK	Packets
I	 tend	 to	 think	 of	 a	 duplicate	 ACK	 as	 the	 pseudo-opposite	 of	 a
retransmission,	because	 it	 is	 sent	when	the	server	detects	 that	a	packet
from	 the	 client	 it	 is	 communicating	 with	 was	 lost	 in	 transit.	 In	 most
cases,	you	can	see	duplicate	ACKs	when	capturing	traffic	on	both	sides
of	 the	 communication.	 Remember	 that	 duplicate	 ACKs	 are	 triggered
when	packets	 are	 received	 out	 of	 sequence.	For	 example,	 if	 the	 server
received	 just	 the	 first	 and	 third	 of	 three	 packets	 sent,	 it	would	 send	 a
duplicate	ACK	to	elicit	a	fast	retransmission	of	the	second	packet	from
the	client.	Since	you	have	received	the	first	and	third	packets,	it’s	likely
that	 whatever	 condition	 caused	 the	 second	 packet	 to	 be	 dropped	 was
only	 temporary,	 so	 the	duplicate	ACK	will	 likely	be	 sent	 and	 received
successfully.	Of	course,	this	scenario	isn’t	always	the	case,	so	when	you
suspect	packet	loss	on	the	server	side	and	don’t	see	any	duplicate	ACKs,
consider	capturing	packets	from	the	client	side	of	the	communication.

Zero	Window	and	Keep-Alive	Packets
The	 sliding	window	 relates	 directly	 to	 the	 server’s	 inability	 to	 receive
and	 process	 data.	 Any	 decrease	 in	 the	 window	 size	 or	 a	 zero	 window



state	is	a	direct	result	of	some	issue	with	the	server,	so	if	you	see	either
occurring	on	 the	wire,	 you	 should	 focus	 your	 investigation	 there.	You
will	 typically	 see	 window	 update	 packets	 on	 both	 sides	 of	 network
communications.

Locating	the	Source	of	High	Latency
In	some	cases,	packet	loss	may	not	be	the	cause	of	latency.	You	may	find	that
even	 though	 communications	 between	 two	 hosts	 are	 slow,	 that	 slowness
doesn’t	 show	 the	 common	 symptoms	of	TCP	 retransmissions	 or	 duplicate
ACKs.	Thus,	 you	need	 another	 technique	 to	 locate	 the	 source	of	 the	high
latency.

One	of	 the	most	effective	ways	 to	 find	 the	source	of	high	 latency	 is	 to
examine	the	initial	connection	handshake	and	the	first	couple	of	packets	that
follow	it.	For	example,	consider	a	simple	connection	between	a	client	and	a
web	server	as	the	client	attempts	to	browse	a	site	hosted	on	the	web	server.
We	are	concerned	with	the	first	six	packets	of	this	communication	sequence,
consisting	 of	 the	 TCP	 handshake,	 the	 initial	 HTTP	 GET	 	 	 request,	 the
acknowledgment	of	that	GET	request,	and	the	first	data	packet	sent	from	the
server	to	the	client.

NOTE

To	follow	along	with	this	section,	ensure	that	you	have	the	proper	time	display
format	set	in	Wireshark	by	selecting	View	▶	Time	Display	Format	▶
Seconds	Since	Previous	Displayed	Packet.

Normal	Communications

latency1.pcapng

We’ll	 discuss	 network	 baselines	 in	 detail	 a	 little	 later	 in	 the	 chapter.	 For
now,	 just	 know	 that	 you	 need	 a	 baseline	 of	 normal	 communications	 to
compare	with	the	conditions	of	high	latency.	For	these	examples,	we	will	use
the	 file	 latency1.pcapng.	 We	 have	 already	 covered	 the	 details	 of	 the	 TCP
handshake	 and	 HTTP	 communication,	 so	 we	 won’t	 review	 those	 topics
again.	 In	 fact,	 we	won’t	 look	 at	 the	 Packet	Details	 pane	 at	 all.	 All	 we	 are



really	concerned	about	is	the	Time	column,	as	shown	in	Figure	11-22.

Figure	11-22:	This	traffic	happens	very	quickly	and	can	be	considered	normal.

This	 communication	 sequence	 is	 quite	 quick,	 with	 the	 entire	 process
taking	less	than	0.1	seconds.

The	next	few	capture	files	we’ll	examine	will	consist	of	this	same	traffic
pattern	but	with	differences	in	the	timing	of	the	packets.

Slow	Communications:	Wire	Latency

latency2.pcapng

Now	 let’s	 turn	 to	 the	 capture	 file	 latency2.pcapng.	 Notice	 that	 all	 of	 the
packets	are	the	same	except	for	the	time	values	in	two	of	them,	as	shown	in
Figure	11-23.

Figure	11-23:	Packets	2	and	5	show	high	latency.

As	we	begin	stepping	through	these	six	packets,	we	encounter	our	first
sign	 of	 latency	 immediately.	 The	 initial	 SYN	 packet	 is	 sent	 by	 the	 client
(172.16.16.128)	to	begin	the	TCP	handshake,	and	a	delay	of	0.87	seconds	is
seen	 before	 the	 return	 SYN/ACK	 is	 received	 from	 the	 server
(74.125.95.104).	 This	 is	 our	 first	 indicator	 that	 we	 are	 experiencing	 wire
latency,	which	is	caused	by	a	device	between	the	client	and	server.

We	can	make	the	determination	that	this	is	wire	latency	because	of	the
nature	of	the	types	of	packets	being	transmitted.	When	the	server	receives	a
SYN	 packet,	 a	 very	 minimal	 amount	 of	 processing	 is	 required	 to	 send	 a
reply,	 because	 the	 workload	 doesn’t	 involve	 any	 processing	 above	 the
transport	layer.	Even	when	a	server	is	experiencing	a	very	heavy	traffic	load,
it	 will	 typically	 respond	 quickly	 to	 a	 SYN	 packet	 with	 a	 SYN/ACK.	This
eliminates	the	server	as	the	potential	cause	of	the	high	latency.



The	client	 is	 also	eliminated	because,	 at	 this	point,	 it	 is	not	doing	any
processing	 beyond	 simply	 receiving	 the	 SYN/ACK	 packet.	 Elimination	 of
both	 the	 client	 and	 server	 points	 us	 to	 potential	 sources	 of	 slow
communication	within	the	first	two	packets	of	this	capture.

Continuing,	 we	 see	 that	 the	 transmission	 of	 the	 ACK	 packet	 that
completes	 the	 three-way	handshake	 occurs	 quickly,	 as	 does	 the	HTTP	 GET
request	 sent	 by	 the	 client.	 All	 of	 the	 processing	 that	 generates	 these	 two
packets	occurs	 locally	on	 the	 client	 following	 receipt	of	 the	SYN/ACK,	 so
these	two	packets	are	expected	to	be	transmitted	quickly,	as	long	as	the	client
is	not	under	a	heavy	processing	load.

At	packet	5,	we	see	another	packet	with	an	incredibly	high	time	value.	It
appears	 that	 after	 our	 initial	HTTP	 GET	 request	was	 sent,	 the	ACK	packet
returned	from	the	server	took	1.15	seconds	to	be	received.	Upon	receipt	of
the	HTTP	GET	request,	the	server	sent	a	TCP	ACK	before	it	began	sending
data,	which	once	again	requires	very	 little	processing	by	the	server.	This	 is
another	sign	of	wire	latency.

Whenever	 you	 experience	 wire	 latency,	 you	 will	 almost	 always	 see	 it
exhibited	 in	both	 the	SYN/ACK	during	 the	 initial	handshake	and	 in	other
ACK	 packets	 throughout	 the	 communication.	 Although	 this	 information
doesn’t	tell	you	the	exact	source	of	the	high	latency	on	this	network,	it	does
tell	 you	 that	 neither	 client	 nor	 server	 is	 the	 source,	 so	 you	 know	 that	 the
latency	 is	 due	 to	 some	 device	 in	 between.	 At	 this	 point,	 you	 could	 begin
examining	the	various	firewalls,	routers,	and	proxies	to	locate	the	culprit.

Slow	Communications:	Client	Latency

latency3.pcapng

The	 next	 latency	 scenario	 we’ll	 examine	 is	 contained	 in	 latency3.pcapng,	 as
shown	in	Figure	11-24.

Figure	11-24:	The	slow	packet	in	this	capture	is	the	initial	HTTP	GET.

This	capture	begins	normally,	with	the	TCP	handshake	occurring	very



quickly	and	without	any	signs	of	latency.	Everything	appears	to	be	fine	until
packet	4,	which	is	an	HTTP	GET	request	after	the	handshake	has	completed.
This	packet	shows	a	1.34-second	delay	from	the	previously	received	packet.

To	 determine	 the	 source	 of	 this	 delay,	 we	 need	 to	 examine	 what	 is
occurring	between	packets	3	and	4.	Packet	3	 is	 the	 final	ACK	 in	 the	TCP
handshake	sent	from	the	client	to	the	server,	and	packet	4	is	the	GET	request
sent	from	the	client	to	the	server.	The	common	thread	here	is	that	these	are
both	packets	 sent	by	 the	 client	 and	 are	 independent	of	 the	 server.	The	 GET
request	should	occur	quickly	after	the	ACK	is	sent,	since	all	of	these	actions
are	centered	on	the	client.

Unfortunately	for	the	end	user,	the	transition	from	ACK	to	GET	doesn’t
happen	 quickly.	 The	 creation	 and	 transmission	 of	 the	 GET	 packet	 requires
processing	 up	 to	 the	 application	 layer,	 and	 the	 delay	 in	 this	 processing
indicates	that	the	client	was	unable	to	perform	the	action	in	a	timely	manner.
Thus,	 the	 client	 is	 ultimately	 responsible	 for	 the	 high	 latency	 in	 the
communication.

Slow	Communications:	Server	Latency

latency4.pcapng

The	last	latency	scenario	we’ll	examine	uses	the	file	latency4.pcapng,	as	shown
in	Figure	11-25.	This	is	an	example	of	server	latency.

Figure	11-25:	High	latency	isn’t	exhibited	until	the	last	packet	of	this	capture.

In	 this	 capture,	 the	 TCP	 handshake	 process	 between	 these	 two	 hosts
completes	 flawlessly	 and	quickly,	 so	 things	 begin	well.	The	next	 couple	 of
packets	bring	more	good	news,	as	the	initial	GET	request	and	response	ACK
packets	are	delivered	quickly	as	well.	It	is	not	until	the	last	packet	in	this	file
that	we	see	signs	of	high	latency.

This	sixth	packet	is	the	first	HTTP	data	packet	sent	from	the	server	in
response	to	the	GET	request	sent	by	the	client,	and	it	has	a	slow	arrival	time	of
0.98	 seconds	 after	 the	 server	 sends	 its	TCP	ACK	 for	 the	 GET	 request.	The



transition	between	packets	5	and	6	is	very	similar	to	the	transition	we	saw	in
the	 previous	 scenario	 between	 the	 handshake	 ACK	 and	 GET	 request.
However,	in	this	case,	the	server	is	the	focus	of	our	concern.

Packet	5	is	the	ACK	that	the	server	sends	in	response	to	the	GET	request
from	the	client.	As	soon	as	that	packet	has	been	sent,	the	server	should	begin
sending	 data	 almost	 immediately.	 The	 accessing,	 packaging,	 and
transmitting	of	 the	data	 in	 this	packet	 is	done	by	the	HTTP	protocol,	and
because	this	 is	an	application-layer	protocol,	a	bit	of	processing	 is	required
by	the	server.	The	delay	in	receipt	of	this	packet	indicates	that	the	server	was
unable	 to	 process	 this	 data	 in	 a	 reasonable	 amount	 of	 time,	 ultimately
pointing	to	it	as	the	source	of	latency	in	this	capture	file.

Latency	Locating	Framework

Using	 six	 packets,	 we’ve	 managed	 to	 locate	 the	 source	 of	 high	 network
latency	between	the	client	and	the	server	in	several	scenarios.	The	diagram
in	 Figure	 11-26	 should	 help	 you	 troubleshoot	 your	 own	 latency	 issues.
These	principles	can	be	applied	to	almost	any	TCP-based	communication.



Figure	11-26:	This	diagram	can	be	used	to	troubleshoot	your	own	latency	issues.

NOTE

Notice	that	we	have	not	talked	a	lot	about	UDP	latency.	Because	UDP	is
designed	to	be	quick	but	unreliable,	it	doesn’t	have	any	built-in	features	to
detect	and	recover	from	latency.	Instead,	it	relies	on	the	application-layer
protocols	(and	ICMP)	that	it’s	paired	with	to	handle	data	delivery	reliability.

Network	Baselining
When	all	else	fails,	your	network	baseline	can	be	one	of	the	most	crucial	pieces
of	 data	 you	 have	when	 troubleshooting	 slowness	 on	 the	 network.	 For	 our
purposes,	 a	 network	 baseline	 consists	 of	 a	 sample	 of	 traffic	 from	 various



points	on	the	network	that	includes	a	large	chunk	of	what	we	would	consider
“normal”	network	traffic.	The	goal	of	having	a	network	baseline	is	for	it	to
serve	 as	 a	 basis	 of	 comparison	 when	 the	 network	 or	 devices	 on	 it	 are
misbehaving.

For	example,	consider	a	scenario	in	which	several	clients	on	the	network
complain	of	 slowness	when	 logging	 in	 to	 a	 local	web	 application	 server.	 If
you	were	 to	 capture	 this	 traffic	 and	 compare	 it	 to	 a	network	baseline,	 you
might	find	that	the	web	server	is	responding	normally	but	that	the	external
DNS	 requests	 resulting	 from	 external	 content	 embedded	 in	 the	 web
application	are	running	twice	as	slowly	as	normal.

You	might	have	noticed	the	slow	external	DNS	server	without	the	aid	of
a	network	baseline,	but	when	you	are	dealing	with	subtle	changes,	that	may
not	be	the	case.	Ten	DNS	queries	taking	0.1	seconds	longer	than	normal	to
process	are	 just	as	bad	as	one	DNS	query	 taking	1	 full	 second	 longer	 than
normal,	but	the	former	situation	is	much	harder	to	detect	without	a	network
baseline.

Because	 no	 two	 networks	 are	 alike,	 the	 components	 of	 a	 network
baseline	can	vary	drastically.	The	following	sections	provide	examples	of	the
components	of	a	network	baseline.	You	may	find	that	all	of	these	items	apply
to	your	network	infrastructure	or	that	very	few	of	them	do.	Regardless,	you
should	be	able	to	place	each	component	of	your	baseline	inside	one	of	three
basic	baseline	categories:	site,	host,	and	application.

Site	Baseline

The	purpose	of	the	site	baseline	is	to	gain	an	overall	snapshot	of	the	traffic	at
each	physical	site	on	your	network.	Ideally,	this	would	be	every	segment	of
the	WAN.

Components	of	this	baseline	might	include	the	following:

Protocols	in	Use
To	 see	 traffic	 from	 all	 devices,	 use	 the	 Protocol	 Hierarchy	 Statistics
window	 (Statistics	 	 	▶	 Protocol	 Hierarchy)	 while	 capturing	 traffic
from	 all	 the	 devices	 on	 the	 network	 segment	 at	 the	 network	 edge
(router/firewall).	Later,	you	can	compare	against	the	hierarchy	output	to
find	 out	 whether	 normally	 present	 protocols	 are	 missing	 or	 new
protocols	have	introduced	themselves	on	the	network.	You	can	also	use



this	 output	 to	 find	 above	 ordinary	 amounts	 of	 certain	 types	 of	 traffic
based	on	protocol.

Broadcast	Traffic
This	 includes	all	broadcast	 traffic	on	 the	network	 segment.	Sniffing	at
any	 point	 within	 the	 site	 should	 let	 you	 capture	 all	 of	 the	 broadcast
traffic,	 allowing	 you	 to	 know	 who	 or	 what	 normally	 sends	 a	 lot	 of
broadcast	out	on	the	network.	Then	you	can	quickly	determine	whether
you	have	too	much	(or	not	enough)	broadcasting	going	on.

Authentication	Sequences
These	 include	 traffic	 from	 authentication	processes	 on	 random	 clients
to	 all	 services,	 such	 as	 Active	 Directory,	 web	 applications,	 and
organization-specific	 software.	 Authentication	 is	 one	 area	 in	 which
services	 are	 commonly	 slow.	 The	 baseline	 allows	 you	 to	 determine
whether	authentication	is	to	blame	for	slow	communications.

Data	Transfer	Rate
This	usually	consists	of	a	measure	of	a	large	data	transfer	from	the	site
to	various	other	sites	in	the	network.	You	can	use	the	capture	summary
and	 graphing	 features	 of	 Wireshark	 (demonstrated	 in	 Chapter	 5)	 to
determine	 the	 transfer	 rate	 and	 consistency	of	 the	 connection.	This	 is
probably	the	most	important	site	baseline	you	can	have.	Whenever	any
connection	 entering	 or	 leaving	 the	 network	 segment	 seems	 slow,	 you
can	perform	the	same	data	transfer	as	in	your	baseline	and	compare	the
results.	This	will	 tell	 you	whether	 the	 connection	 is	 actually	 slow	 and
will	possibly	even	help	you	find	the	area	in	which	the	slowness	begins.

Host	Baseline

You	probably	don’t	need	to	baseline	every	single	host	within	your	network.
The	 host	 baseline	 should	 be	 performed	 on	 only	 high-traffic	 or	 mission-
critical	servers.	Basically,	if	a	slow	server	will	result	in	angry	phone	calls	from
management,	you	should	have	a	baseline	of	that	host.

Components	of	the	host	baseline	include	the	following:

Protocols	in	Use
This	 baseline	 provides	 a	 good	 opportunity	 to	 use	 the	 Protocol



Hierarchy	Statistics	window	while	capturing	traffic	from	the	host.	Later,
you	 can	 compare	 against	 this	 baseline	 to	 find	 out	 whether	 normally
present	 protocols	 are	 missing	 or	 new	 protocols	 have	 introduced
themselves	 on	 the	 host.	 You	 can	 also	 use	 this	 to	 find	 unusually	 large
amounts	of	certain	types	of	traffic	based	on	protocol.

Idle/Busy	Traffic
This	 baseline	 simply	 consists	 of	 general	 captures	 of	 normal	 operating
traffic	 during	 peak	 and	 off-peak	 times.	 Knowing	 the	 number	 of
connections	 and	 amount	 of	 bandwidth	 used	 by	 those	 connections	 at
different	times	of	the	day	will	allow	you	to	determine	whether	slowness
is	a	result	of	user	load	or	another	issue.

Startup/Shutdown
To	 obtain	 this	 baseline,	 you’ll	 need	 to	 create	 a	 capture	 of	 the	 traffic
generated	during	the	startup	and	shutdown	sequences	of	the	host.	If	the
computer	 refuses	 to	boot,	 refuses	 to	 shut	down,	or	 is	 abnormally	 slow
during	either	sequence,	you	can	use	this	baseline	to	determine	whether
the	cause	is	network	related.

Authentication	Sequences
Getting	 this	 baseline	 requires	 capturing	 traffic	 from	 authentication
processes	to	all	services	on	the	host.	Authentication	is	one	area	in	which
services	 are	 commonly	 slow.	 The	 baseline	 allows	 you	 to	 determine
whether	authentication	is	to	blame	for	slow	communications.

Associations/Dependencies
This	 baseline	 consists	 of	 a	 longer-duration	 capture	 to	 determine	what
other	hosts	 this	 host	 is	 dependent	upon	 (and	 are	dependent	upon	 this
host).	 You	 can	 use	 the	 Conversations	 window	 (Statistics	 	 	 ▶
Conversations)	to	see	these	associations	and	dependencies.	An	example
is	a	SQL	Server	host	on	which	a	web	server	depends.	We	are	not	always
aware	 of	 the	 underlying	 dependencies	 between	 hosts,	 so	 the	 host
baseline	can	be	used	to	determine	these.	From	there,	you	can	determine
whether	a	host	 is	not	 functioning	properly	due	 to	a	malfunctioning	or
high-latency	dependency.



Application	Baseline

The	final	network	baseline	category	is	the	application	baseline.	This	baseline
should	be	performed	on	all	business-critical	network-based	applications.

The	following	are	the	components	of	the	application	baseline:

Protocols	in	Use
Again,	for	this	baseline,	use	the	Protocol	Hierarchy	Statistics	window	in
Wireshark,	 this	 time	while	capturing	traffic	 from	the	host	running	the
application.	Later,	you	can	compare	against	this	list	to	find	out	whether
protocols	that	the	application	depends	on	are	functioning	incorrectly	or
not	at	all.

Startup/Shutdown
This	 baseline	 includes	 a	 capture	 of	 the	 traffic	 generated	 during	 the
startup	 and	 shutdown	 sequences	 of	 the	 application.	 If	 the	 application
refuses	 to	 start	 or	 is	 abnormally	 slow	during	 either	 sequence,	 you	 can
use	this	baseline	to	determine	the	cause.

Associations/Dependencies
This	 baseline	 requires	 a	 longer-duration	 capture	 in	 which	 the
Conversations	window	can	be	used	to	determine	on	which	other	hosts
and	applications	 this	 application	depends.	We	are	not	 always	 aware	of
the	underlying	dependencies	between	applications,	 so	 this	baseline	can
be	used	to	determine	those.	From	there,	you	can	determine	whether	an
application	is	not	functioning	properly	due	to	a	malfunctioning	or	high-
latency	dependency.

Data	Transfer	Rate
You	can	use	 the	capture	 summary	and	graphing	 features	of	Wireshark
to	determine	the	transfer	rate	and	consistency	of	the	connections	to	the
application	 server	 during	 its	 normal	 operation.	 Whenever	 the
application	 is	 reported	 as	 being	 slow,	 you	 can	 use	 this	 baseline	 to
determine	 whether	 the	 issues	 being	 experienced	 are	 a	 result	 of	 high
utilization	or	high	user	load.

Additional	Notes	on	Baselines



Here	 are	 a	 few	more	 points	 to	 keep	 in	mind	when	 creating	 your	 network
baseline:

•					When	creating	your	baselines,	capture	each	one	at	least	three	times:
once	during	a	low-traffic	time	(early	morning),	once	during	a	high-
traffic	time	(midafternoon),	and	once	during	a	no-traffic	time	(late
night).

•					When	possible,	avoid	capturing	directly	from	the	hosts	you	are
baselining.	During	periods	of	high	traffic,	doing	so	may	put	an	increased
load	on	the	device,	hurt	its	performance,	and	cause	your	baseline	to	be
invalid	due	to	dropped	packets.

•					Your	baseline	will	contain	some	very	intimate	information	about	your
network,	so	be	sure	to	secure	it.	Store	it	in	a	safe	place	where	only	the
appropriate	individuals	have	access.	But	at	the	same	time,	keep	it	readily
accessible	so	you	can	use	it	when	needed.	Consider	keeping	it	on	a	USB
flash	drive	or	on	an	encrypted	partition.

•					Keep	all	.pcap			and	.pcapng	files	associated	with	your	baseline	and	create
a	cheat	sheet	of	the	more	commonly	referenced	values,	such	as
associations	or	average	data	transfer	rates.

Final	Thoughts
This	chapter	has	focused	on	troubleshooting	slow	networks.	We’ve	covered
some	of	the	more	useful	reliability	detection	and	recovery	features	of	TCP,
demonstrated	 how	 to	 locate	 the	 source	 of	 high	 latency	 in	 network
communications,	 and	 discussed	 the	 importance	 of	 a	 network	 baseline	 and
some	 of	 its	 components.	 Using	 the	 techniques	 discussed	 here,	 along	 with
some	 of	 Wireshark’s	 graphing	 and	 analysis	 features,	 you	 should	 be	 well
equipped	 to	 troubleshoot	 when	 you	 get	 that	 call	 complaining	 that	 the
network	is	slow.



12
PACKET	ANALYSIS	FOR	SECURITY

Although	 most	 of	 this	 book	 focuses	 on	 using	 packet
analysis	 for	 network	 troubleshooting,	 a	 considerable
amount	 of	 real-world	 packet	 analysis	 is	 done	 for
security	 purposes.	 For	 example,	 an	 intrusion	 analyst
might	review	network	traffic	from	potential	intruders,
or	 a	 forensic	 investigator	 might	 attempt	 to	 ascertain
the	 extent	 of	 a	malware	 infection	 on	 a	 compromised
host.

Performing	 packet	 analysis	 while	 investigating	 security	 incidents	 is
always	a	challenging	scenario	because	it	involves	the	unknown	element	of	an
attacker-controlled	device.	You	 can’t	walk	 over	 to	 the	 attacker’s	 cubicle	 to
ask	a	question	or	baseline	their	normal	traffic;	all	you	have	to	work	with	 is
the	interaction	you	can	capture	between	their	system	and	yours.	Fortunately,
for	an	attacker	to	breach	one	of	your	systems	remotely,	they	have	to	interact
with	the	network	in	some	form.	Of	course,	they	know	that	too,	so	they	aren’t
lacking	in	tricks	to	obfuscate	their	techniques.

In	this	chapter,	we’ll	take	the	viewpoint	of	a	security	practitioner	as	we
examine	different	aspects	of	a	system	compromise	at	the	network	level.	We’ll



cover	 network	 reconnaissance,	 malicious	 traffic	 redirection,	 and	 common
malware	techniques.	In	some	cases,	we’ll	take	on	the	role	of	intrusion	analyst
as	 we	 dissect	 traffic	 based	 on	 alerts	 from	 an	 intrusion-detection	 system
(IDS).	 Reading	 this	 chapter	 will	 provide	 you	 with	 insight	 into	 network
security	that	may	prove	critical,	even	if	you	are	not	presently	 in	a	security-
focused	role.

Reconnaissance
An	attacker’s	 first	 step	 is	 often	 to	perform	 in-depth	 research	on	 the	 target
system.	 This	 step,	 commonly	 referred	 to	 as	 footprinting,	 is	 frequently
accomplished	 using	 various	 publicly	 available	 resources,	 such	 as	 the	 target
company’s	website	or	Google.	Once	this	research	is	completed,	the	attacker
will	 typically	begin	 scanning	 the	 IP	address	 (or	DNS	name)	of	 their	 target
for	open	ports	or	running	services.

Scanning	allows	the	attacker	to	determine	whether	the	target	is	alive	and
reachable.	 For	 example,	 consider	 a	 scenario	 in	 which	 bank	 robbers	 are
planning	 to	 steal	 from	 the	 largest	 bank	 in	 the	 city,	 located	 at	 123	 Main
Street.	They	spend	weeks	planning	an	elaborate	heist,	only	to	find	out	upon
arrival	at	the	address	that	the	bank	has	moved	to	555	Vine	Street.	Worse	yet,
imagine	that	the	robbers	plan	to	walk	into	the	bank	during	normal	business
hours,	intending	to	steal	from	the	vault,	only	to	get	to	the	bank	and	discover
it’s	 closed	 that	 day.	 Whether	 robbing	 a	 bank	 or	 attacking	 a	 network,
ensuring	that	the	target	is	alive	and	accessible	is	the	first	hurdle.

Scanning	 also	 tells	 the	 attacker	 on	which	 ports	 the	 target	 is	 listening.
Returning	to	our	bank	robbers	analogy,	consider	what	would	happen	if	the
robbers	 showed	 up	 at	 the	 bank	 with	 absolutely	 no	 knowledge	 of	 the
building’s	physical	 layout.	They	would	have	no	 idea	how	 to	gain	 access	 to
the	vault	because	they	wouldn’t	know	the	weak	points	in	the	bank’s	physical
security.

In	 this	 section,	 we’ll	 discuss	 a	 few	 of	 the	 more	 common	 scanning
techniques	used	to	 identify	hosts,	 their	open	ports,	and	vulnerabilities	on	a
network.

NOTE

So	far,	this	book	has	referred	to	the	sides	of	a	connection	as	the	transmitter



and	receiver	or	as	the	client	and	server.	This	chapter	refers	to	each	side	of
the	communication	as	either	the	attacker	or	the	target.

SYN	Scan

synscan.pcapng

The	 type	of	 scanning	often	done	 first	 against	 a	 system	 is	 a	TCP	SYN	 scan,
also	 known	 as	 a	 stealth	 scan	 or	 a	 half-open	 scan.	 A	 SYN	 scan	 is	 the	 most
common	type	for	several	reasons:
•					It	is	very	fast	and	reliable.
•					It	is	accurate	on	all	platforms,	regardless	of	TCP	stack	implementation.
•					It	is	less	noisy	than	other	scanning	techniques.

The	 TCP	 SYN	 scan	 relies	 on	 the	 three-way	 handshake	 process	 to
determine	which	ports	are	open	on	a	target	host.	The	attacker	sends	a	TCP
SYN	 packet	 to	 a	 range	 of	 ports	 on	 the	 target,	 as	 if	 trying	 to	 establish	 a
channel	 for	 normal	 communication	 on	 the	 ports.	 Once	 this	 packet	 is
received	by	the	target,	one	of	several	things	may	happen,	as	shown	in	Figure
12-1.



Figure	12-1:	Possible	results	of	a	TCP	SYN	scan

If	a	service	on	the	target’s	machine	is	listening	on	a	port	that	receives	the
SYN	packet,	it	will	reply	to	the	attacker	with	a	TCP	SYN/ACK	packet,	the
second	 part	 of	 the	 TCP	 handshake.	 Now	 the	 attacker	 knows	 that	 port	 is
open	 and	 a	 service	 is	 listening	 on	 it.	Under	 normal	 circumstances,	 a	 final
TCP	 ACK	 would	 be	 sent	 to	 complete	 the	 connection	 handshake.	 In	 this
case,	however,	the	attacker	doesn’t	want	that	to	happen	since	they	won’t	be
communicating	with	 the	 host	 further	 at	 this	 point,	 so	 the	 attacker	 doesn’t
attempt	to	complete	the	TCP	handshake.

If	no	service	is	listening	on	a	scanned	port,	the	attacker	will	not	receive	a
SYN/ACK.	 Depending	 on	 the	 configuration	 of	 the	 target’s	 operating
system,	 the	attacker	could	receive	an	RST	packet	 in	return,	 indicating	 that
the	port	is	closed.	Alternatively,	the	attacker	may	receive	no	response	at	all.



No	response	could	mean	that	the	port	is	filtered	by	an	intermediate	device,
such	as	a	firewall	or	the	host	itself.	On	the	other	hand,	it	could	just	be	that
the	 response	 was	 lost	 in	 transit.	 Thus,	 while	 this	 result	 typically	 indicates
that	the	port	is	closed,	it	is	ultimately	inconclusive.

The	 file	 synscan.pcapng	 provides	 a	 great	 example	 of	 a	 SYN	 scan
performed	 with	 the	 Nmap	 tool.	 Nmap	 is	 a	 robust	 network-scanning
application	developed	by	Gordon	“Fyodor”	Lyon.	It	can	perform	just	about
any	kind	of	 scan	you	can	 imagine.	You	can	download	Nmap	 for	 free	 from
http://www.nmap.com/download.html.

Our	sample	capture	contains	roughly	2,000	packets,	 telling	us	that	 this
scan	is	of	a	reasonable	size.	One	of	the	best	ways	to	ascertain	the	scope	of	a
scan	of	this	nature	is	to	view	the	Conversations	window,	as	shown	in	Figure
12-2.	 There,	 you	 should	 see	 only	 one	 IPv4	 conversation	➊	 between	 the
attacker	 (172.16.0.8)	 and	 the	 target	 (64.13.134.52).	 You	 will	 also	 see	 that
there	are	1,994	TCP	conversations	between	these	two	hosts	➋—basically	a
new	conversation	for	every	port	pairing	involved	in	the	communications.

Figure	12-2:	The	Conversations	window	shows	the	variety	of	TCP	communications	taking	place.

The	scanning	is	occurring	very	quickly,	so	scrolling	through	the	capture
file	 isn’t	the	best	way	to	find	the	response	associated	with	each	initial	SYN
packet.	Several	more	packets	might	be	sent	before	a	response	to	the	original
packet	is	received.	Fortunately,	we	can	create	filters	to	help	us	find	the	right
traffic.

Using	Filters	with	SYN	Scans

http://www.nmap.com/download.html


As	 an	 example	 of	 filtering,	 let’s	 consider	 the	 first	 packet	 in	 the	 capture,
which	 is	 a	 SYN	 packet	 sent	 to	 the	 target	 on	 port	 443	 (HTTPS).	 To	 see
whether	there	was	a	response	to	this	packet,	we	can	create	a	filter	to	show	all
traffic	to	and	from	port	443.	Here’s	how	to	do	this	quickly:

1.	 Select	the	first	packet	in	the	capture	file.

2.	 Expand	the	TCP	header	in	the	Packet	Details	pane.

3.	 Right-click	the	Destination	Port	field,	select	Prepare	as	Filter,	and
click	Selected.

4.	 This	will	place	a	filter	in	the	filter	dialog	for	all	packets	with	the
destination	port	of	443.	Now,	because	we	also	want	all	packets	from	the
source	port	of	443,	click	in	the	filter	dialog	at	the	top	of	the	screen	and
erase	the	dst	portion	of	the	filter.

The	 resulting	 filter	 will	 yield	 two	 packets,	 which	 are	 both	TCP	 SYN
packets	sent	from	attacker	to	target,	as	shown	in	Figure	12-3.

Figure	12-3:	Two	attempts	to	establish	a	connection	with	SYN	packets

NOTE

In	this	section,	packets	are	shown	using	the	time	display	format	Seconds	Since
Previous	Displayed	Packet.

Since	there	is	no	response	to	either	of	these	packets,	it’s	possible	that	the
response	is	being	filtered	by	the	target	host	or	an	intermediary	device	or	that
the	 port	 is	 closed.	 Ultimately,	 the	 result	 of	 the	 scan	 against	 port	 443	 is
inconclusive.

We	can	attempt	this	same	technique	on	another	packet	to	see	whether
we	get	different	results.	To	do	so,	clear	your	previous	filter	and	select	packet
9	 in	 the	 list.	 This	 is	 a	 SYN	 packet	 to	 port	 53,	 commonly	 associated	with
DNS.	Using	the	method	outlined	in	the	previous	steps	or	by	modifying	your
last	 filter,	 create	 a	 filter	 that	will	 show	all	TCP	port	53	 traffic.	When	you
apply	this	filter,	you	should	see	five	packets,	as	shown	in	Figure	12-4.



Figure	12-4:	Five	packets	indicating	a	port	is	open

The	first	of	these	packets	is	the	SYN	we	selected	at	the	beginning	of	the
capture	 (packet	 9).	 The	 second	 is	 a	 response	 from	 the	 target.	 It’s	 a	 TCP
SYN/ACK—the	 response	 expected	 when	 setting	 up	 the	 three-way
handshake.	Under	normal	circumstances,	the	next	packet	would	be	an	ACK
from	the	host	that	sent	the	initial	SYN.	However,	in	this	case,	our	attacker
doesn’t	want	to	complete	the	connection	and	doesn’t	send	a	response.	As	a
result,	the	target	retransmits	the	SYN/ACK	three	more	times	before	giving
up.	 Since	 a	 SYN/ACK	 response	 is	 received	 when	 attempting	 to
communicate	with	 the	host	on	port	53,	 it’s	 safe	 to	assume	 that	 a	 service	 is
listening	on	that	port.

Let’s	rinse	and	repeat	this	process	one	more	time	for	packet	13.	This	is	a
SYN	packet	sent	to	port	113,	which	is	commonly	associated	with	the	Ident
protocol,	 often	 used	 for	 IRC	 identification	 and	 authentication	 services.	 If
you	apply	the	same	type	of	filter	to	the	port	listed	in	this	packet,	you	will	see
four	packets,	as	shown	in	Figure	12-5.

Figure	12-5:	A	SYN	followed	by	an	RST,	indicating	the	port	is	closed

The	first	packet	is	the	initial	SYN,	which	is	followed	immediately	by	an
RST	from	the	 target.	This	 is	 an	 indication	 that	 the	 target	 is	not	accepting
connections	on	the	targeted	port	and	that	a	service	is	most	likely	not	running
on	it.

Identifying	Open	and	Closed	Ports

Now	 that	 you	understand	 the	different	 types	of	 responses	 a	SYN	scan	can
elicit,	you’ll	want	to	find	a	fast	method	of	identifying	which	ports	are	open
or	closed.	The	answer	lies	within	the	Conversations	window	once	again.	In
this	window,	 you	 can	 sort	 the	TCP	 conversations	 by	 packet	 number,	with
the	highest	values	at	the	top,	by	clicking	the	Packets	column	header	until	the



arrow	points	downward,	as	shown	in	Figure	12-6.

Figure	12-6:	Finding	open	ports	with	the	Conversations	window

Three	scanned	ports	include	five	packets	in	each	of	their	conversations
➊.	We	know	that	ports	53,	80,	and	22	are	open,	because	these	five	packets
represent	 the	 initial	 SYN,	 the	 corresponding	 SYN/ACK,	 and	 the
retransmitted	SYN/ACKs	from	the	target.

For	five	ports,	only	two	packets	were	involved	in	the	communication	➋.
The	 first	 is	 the	 initial	 SYN,	 and	 the	 second	 is	 the	 RST	 from	 the	 target.
These	results	indicate	that	ports	113,	25,	31337,	113,	and	70	are	closed.

The	 remaining	 entries	 in	 the	Conversations	window	 include	 only	 one
packet,	 meaning	 that	 the	 target	 host	 never	 responded	 to	 the	 initial	 SYN.
These	remaining	ports	are	most	likely	closed,	but	we’re	not	sure.

This	technique	of	counting	packets	worked	for	this	host,	but	it	won’t	be
consistent	 for	 all	 hosts	 you	 might	 scan,	 so	 you	 shouldn’t	 rely	 on	 it
exclusively.	 Instead,	 focus	 on	 learning	 what	 normal	 stimulus	 and	 response
looks	like	and	what	abnormal	responses	to	normal	stimuli	can	mean.

Operating	System	Fingerprinting

An	 attacker	 puts	 a	 great	 deal	 of	 value	 on	 knowing	 the	 target’s	 operating
system.	Knowledge	of	the	operating	system	helps	the	attacker	configure	all
their	methods	of	attack	correctly	for	that	system.	It	also	allows	the	attacker
to	know	the	location	of	certain	critical	files	and	directories	within	the	target
file	system,	should	they	succeed	in	accessing	the	system.



Operating	system	fingerprinting	is	the	name	given	to	a	group	of	techniques
used	to	determine	the	operating	system	running	on	a	system	without	having
physical	 access	 to	 that	 system.	 There	 are	 two	 types	 of	 operating	 system
fingerprinting:	passive	and	active.

Passive	Fingerprinting

passiveosfinger	printing.pcapng

Using	 passive	 fingerprinting,	 you	 examine	 certain	 fields	 within	 packets	 sent
from	the	target	to	determine	the	operating	system	in	use.	The	technique	is
considered	passive	because	you	 listen	 to	only	 the	packets	 the	 target	host	 is
sending	and	don’t	actively	send	any	packets	to	the	host	yourself.	This	type	of
operating	system	fingerprinting	is	ideal	for	attackers	because	it	allows	them
to	be	stealthy.

That	 said,	 how	 can	 we	 determine	 which	 operating	 system	 a	 host	 is
running	based	on	nothing	but	the	packets	it	sends?	This	feat	is	possible	due
to	 the	 lack	of	 standardized	 values	 in	 the	 specifications	 defined	by	protocol
RFCs.	Although	the	various	fields	contained	in	TCP,	UDP,	and	IP	headers
are	very	specific,	default	values	are	typically	not	defined	for	every	field.	This
means	that	the	TCP/IP	stack	implementation	in	each	operating	system	must
define	 its	 own	 default	 values	 for	 these	 fields.	Table	 12-1	 lists	 some	 of	 the
more	common	fields	and	the	default	values	that	can	be	used	to	link	them	to
various	 operating	 systems.	 Keep	 in	 mind	 that	 these	 values	 are	 subject	 to
change	with	new	OS	version	releases.

Table	12-1:	Common	Passive	Fingerprinting	Values

Protocol
header

Field Default
value

Platform

IP Initial	time	to
live

64 NMap,	BSD,	OS	X,	Linux

128 Novell,	Windows

255 Cisco	IOS,	Palm	OS,	Solaris

IP Don’t
fragment	flag

Set BSD,	OS	X,	Linux,	Novell,
Windows,	Palm	OS,	Solaris



Not	set Nmap,	Cisco	IOS

TCP Maximum
segment	size

0 Nmap

1440–
1460

Windows,	Novell

1460 BSD,	OS	X,	Linux,	Solaris

TCP Window	size 1024–
4096

Nmap

65535 BSD,	OS	X

Variable Linux

16384 Novell

4128 Cisco	IOS

24820 Solaris

Variable Windows

TCP SackOK Set Linux,	Windows,	OS	X,	OpenBSD

Not	set Nmap,	FreeBSD,	Novell,	Cisco
IOS,	Solaris

The	packets	contained	 in	 the	 file	passiveosfingerprinting.pcapng	 are	great
examples	of	this	technique.	There	are	two	packets	in	this	file.	Both	are	TCP
SYN	packets	sent	to	port	80,	but	they	come	from	different	hosts.	Using	only
the	values	contained	in	these	packets	and	referring	to	Table	12-1,	we	should
be	able	to	determine	the	operating	system	architecture	in	use	on	each	host.
The	details	of	each	packet	are	shown	in	Figure	12-7.

Using	Table	12-1	as	a	 reference,	we	can	create	Table	12-2,	which	 is	a
breakdown	of	the	relevant	fields	in	these	packets.

Table	12-2:	Breakdown	of	the	Operating	System	Fingerprinting	Packets

Protocol	header Field Packet	1	value Packet	2	value

IP Initial	time	to	live 128 64

IP Don’t	fragment	flag Set Set



TCP Maximum	segment	size 1,440	bytes 1,460	bytes

TCP Window	size 64,240	bytes 2,920	bytes

TCP SackOK Set Set

Based	 on	 these	 values,	 we	 can	 conclude	 that	 packet	 1	was	most	 likely
sent	by	 a	device	 running	Windows	 and	packet	2	was	most	 likely	 sent	by	 a
device	running	Linux.

Keep	in	mind	that	the	list	of	common	passive	fingerprinting	identifying
fields	in	Table	12-1	is	by	no	means	exhaustive.	There	are	many	quirks	that
may	result	 in	deviations	from	these	expected	values.	Therefore,	you	cannot
fully	rely	on	the	results	gained	from	passive	operating	system	fingerprinting.



Figure	12-7:	These	packets	can	tell	us	which	operating	system	they	were	sent	from.

NOTE

In	many	cases,	attackers	rely	on	automated	tools	to	passively	identify	the
operating	system	of	a	target.	One	tool	that	uses	operating	system
fingerprinting	techniques	is	p0f.	This	tool	analyzes	relevant	fields	in	a	packet
capture	and	outputs	the	suspected	operating	system.	Using	tools	like	p0f,	you
can	get	not	only	the	operating	system	architecture	but	sometimes	even	the
version	or	patch	level	of	the	OS.	You	can	download	p0f	from
http://lcamtuf.coredump.cx/p0f.shtml.

Active	Fingerprinting

activeosfingerprinting.pcapng

When	passively	monitoring	 traffic	doesn’t	yield	 the	desired	results,	 a	more
direct	 approach—active	 fingerprinting—may	 be	 required.	Now	 the	 attacker
actively	sends	specially	crafted	packets	to	the	target	to	elicit	replies	that	will
reveal	 the	 operating	 system	 on	 the	 target’s	machine.	Of	 course,	 since	 this
approach	involves	communicating	directly	with	the	target,	it	is	not	the	least
bit	stealthy,	but	it	can	be	highly	effective.

The	 file	 activeosfingerprinting.pcapng	 contains	 an	 example	 of	 an	 active
operating	 system	 fingerprinting	 scan	 initiated	 with	 the	 Nmap	 scanning
utility.	Several	packets	in	this	file	are	the	result	of	Nmap’s	sending	different

http://lcamtuf.coredump.cx/p0f.shtml


probes	 designed	 to	 elicit	 responses	 that	 will	 allow	 for	 operating	 system
identification.	 Nmap	 records	 the	 responses	 to	 these	 probes	 and	 builds	 a
fingerprint,	 which	 it	 compares	 to	 a	 database	 of	 values	 to	 make	 a
determination.

NOTE

The	techniques	used	by	Nmap	to	actively	fingerprint	an	operating	system	are
quite	complex.	To	learn	more	about	how	Nmap	performs	active	operating
system	finger-printing,	read	the	definitive	guide	to	Nmap,	Nmap	Network
Scanning	(2008),	by	the	tool’s	author,	Gordon	“Fyodor”	Lyon.

Traffic	Manipulation
One	of	the	key	points	I’ve	tried	to	show	throughout	this	book	is	that	you	can
learn	a	lot	about	a	system	or	its	users	by	examining	the	right	packets.	Thus,
it	 should	 come	 as	 no	 surprise	 that	 attackers	 often	 seek	 to	 capture	 these
packets	 themselves.	 By	 examining	 the	 packets	 generated	 by	 a	 system,	 an
attacker	 can	 learn	 about	 the	 operating	 system,	 the	 applications	 in	 use,
authentication	credentials,	and	much	more.

In	this	section,	we’ll	examine	two	techniques	at	the	packet	level:	how	an
attacker	can	use	ARP	cache	poisoning	to	intercept	and	capture	target	traffic
and	 how	 they	 can	 intercept	 HTTP	 cookies	 to	 perform	 session-hijacking
attacks.

ARP	Cache	Poisoning

arppoison.pcapng

In	Chapter	7,	we	discussed	how	the	ARP	protocol	is	used	to	allow	devices	to
map	IP	addresses	to	MAC	addresses	inside	of	a	network,	and,	in	Chapter	2,
we	discussed	how	ARP	cache	poisoning	can	be	a	useful	technique	for	tapping
into	the	wire	and	intercepting	traffic	from	hosts	whose	packets	you	need	to
analyze.	When	 used	 for	 legitimate	 purposes,	 ARP	 cache	 poisoning	 is	 very
helpful	 for	 troubleshooting.	 However,	 when	 this	 technique	 is	 used	 with
malicious	intent,	it	is	a	lethal	form	of	the	man-in-the-middle	(MITM)	attack.

In	 a	MITM	 attack,	 an	 attacker	 redirects	 traffic	 between	 two	 hosts	 in



order	to	intercept	or	modify	data	in	transit.	There	are	many	forms	of	MITM
attacks,	 including	 DNS	 spoofing	 and	 SSL	 hijacking.	 In	 ARP	 cache
poisoning,	 specially	crafted	ARP	packets	 trick	 two	hosts	 into	 thinking	 they
are	communicating	with	each	other	when,	 in	 fact,	 they	are	communicating
with	a	third	party	who	is	relaying	packets	as	an	intermediary.	In	this	way,	the
illegitimate	use	of	a	protocol’s	normal	functionality	can	be	used	for	malicious
purposes.

The	 file	arppoison.pcapng	 contains	 an	 example	of	ARP	cache	poisoning.
When	you	open	it,	you’ll	see	that	this	traffic	appears	normal	at	first	glance.
However,	 if	 you	 follow	 the	 packets,	 you’ll	 see	 our	 target,	 172.16.0.107,
browsing	to	Google	and	performing	a	search.	As	a	result	of	this	search,	there
is	quite	a	bit	of	HTTP	traffic	with	some	DNS	queries	mixed	in.

We	know	that	ARP	cache	poisoning	is	a	technique	that	occurs	at	layer	2,
so	 if	we	 just	casually	peruse	 the	packets	 in	 the	Packet	List	pane,	 it	may	be
hard	to	see	any	foul	play.	To	give	us	a	leg	up,	we’ll	add	a	couple	of	columns
to	the	Packet	List	pane,	as	follows:

1.	 Select	Edit	▶	Preferences.

2.	 Click	Columns	on	the	left	side	of	the	Preferences	window.

3.	 Click	the	plus	(+)	button	to	add	a	new	column.

4.	 In	the	Title	area,	type	Source MAC	and	press	ENTER.

5.	 In	the	Type	drop-down	list,	select	Hw	src	addr	(resolved).

6.	 Click	the	newly	added	entry	and	drag	it	so	that	it	is	directly	after	the
Source	column.

7.	 Click	the	plus	(+)	button	to	add	a	new	column.

8.	 In	the	Title	area,	type	Dest MAC	and	press	ENTER.

9.	 In	the	Type	drop-down	list,	select	Hw	dest	addr	(resolved).

10.	 Click	the	newly	added	entry	and	drag	it	so	that	it	is	directly	after	the
Destination	column.

11.	 Click	OK	to	apply	the	changes.

When	 you	 have	 completed	 these	 steps,	 your	 screen	 should	 look	 like
Figure	 12-8.	 You	 should	 now	 have	 two	 additional	 columns	 showing	 the
source	and	destination	MAC	addresses	of	the	packets.



Figure	12-8:	The	column	configuration	screen	with	newly	added	columns	for	source	and
destination	hardware	addresses

If	 you	 still	have	MAC	name	 resolution	 turned	on,	 you	 should	 see	 that
the	 communicating	 devices	 have	 MAC	 addresses	 that	 indicate	 Dell	 and
Cisco	 hardware.	This	 is	 very	 important	 to	 remember	 because	 as	we	 scroll
through	the	capture,	we’ll	 see	that	 this	changes	at	packet	54,	where	we	see
some	peculiar	ARP	traffic	occurring	between	the	Dell	host	(our	target)	and	a
newly	introduced	HP	host	(the	attacker),	as	shown	in	Figure	12-9.

Figure	12-9:	Strange	ARP	traffic	between	the	Dell	device	and	an	HP	device

Before	 proceeding	 further,	 note	 the	 endpoints	 involved	 in	 this
communication,	which	are	listed	in	Table	12-3.

Table	12-3:	Endpoints	Being	Monitored

Role Device	type IP	address MAC	address

Target Dell 172.16.0.107 00:21:70:c0:56:f0



Target Dell 172.16.0.107 00:21:70:c0:56:f0

Router Cisco 172.16.0.1 00:26:0b:31:07:33

Attacker HP Unknown 00:25:b3:bf:91:ee

But	what	makes	this	traffic	strange?	Recall	from	our	discussion	of	ARP
in	Chapter	7	that	there	are	two	primary	types	of	ARP	packets:	a	request	and
a	 response.	 The	 request	 packet	 is	 sent	 as	 a	 broadcast	 to	 all	 hosts	 on	 the
network	 in	order	to	 find	the	machine	that	has	the	MAC	address	associated
with	a	particular	IP	address.	Then	the	machine	that	replies	to	the	requesting
device	sends	a	response	as	a	unicast	packet.	Given	this	background,	we	can
identify	a	 few	peculiar	 things	 in	 this	communication	sequence,	 referring	 to
Figure	12-9.

First,	packet	54	is	an	ARP	request	sent	from	the	attacker	(MAC	address
00:25:b3:bf:91:ee)	 as	 a	 unicast	 packet	 directly	 to	 the	 target	 (MAC	 address
00:21:70:c0:56:f0)	➊.	This	type	of	request	should	be	broadcast	to	all	hosts	on
the	network,	but	 this	one	 singles	out	 the	 target.	Also,	notice	 that	although
this	packet	is	sent	from	the	attacker	and	includes	the	attacker’s	MAC	address
in	the	ARP	header,	it	lists	the	router’s	IP	address	rather	than	its	own.

This	 packet	 is	 followed	 by	 a	 response	 from	 the	 target	 to	 the	 attacker
containing	its	MAC	address	information	➋.	The	real	voodoo	here	occurs	in
packet	 56,	 in	 which	 the	 attacker	 sends	 a	 packet	 to	 the	 target	 with	 an
unsolicited	ARP	reply	telling	it	that	172.16.0.1	is	located	at	its	MAC	address,
00:25:b3:bf:91:ee	 ➌.	 The	 problem	 is	 that	 MAC	 address	 172.16.0.1	 isn’t
00:25:b3:bf:91:ee	but	is	00:26:0b:31:07:33.	We	know	this	because	we	saw	the
router	 at	 172.16.0.1	 communicating	 with	 the	 target	 earlier	 in	 the	 packet
capture.	Since	the	ARP	protocol	is	inherently	insecure	(it	accepts	unsolicited
updates	to	its	ARP	table),	the	target	will	now	be	sending	traffic	that	should
be	going	to	the	router	to	the	attacker	instead.

NOTE

Because	this	packet	capture	was	taken	from	the	target’s	machine,	you	don’t
actually	see	the	entire	picture.	For	this	attack	to	work,	the	attacker	must	send
the	same	sequence	of	packets	to	the	router	in	order	to	trick	it	into	thinking	the
attacker	is	actually	the	target,	but	we	would	need	to	take	another	packet
capture	from	the	router	(or	the	attacker)	to	see	those	packets.



Once	 both	 target	 and	 router	 have	 been	 duped,	 the	 communication
between	them	flows	through	the	attacker,	as	illustrated	in	Figure	12-10.

Figure	12-10:	ARP	cache	poisoning	as	an	MITM	attack

Packet	57	 confirms	 the	 success	of	 this	 attack.	When	you	 compare	 this
packet	to	one	sent	before	the	mysterious	ARP	traffic,	such	as	packet	40	(see
Figure	12-11),	you	will	see	that	the	IP	address	of	the	remote	server	(Google)
remains	 the	 same	 ➋	 but	 the	 target	 MAC	 address	 has	 changed	 ➊.	 This
change	in	MAC	address	tells	us	that	the	traffic	is	now	being	routed	through
the	attacker	before	it	gets	to	the	router.

Because	 this	 attack	 is	 so	 subtle,	 it’s	 very	difficult	 to	detect.	To	 find	 it,
you	typically	need	the	aid	of	an	IDS	configured	specifically	to	address	it	or
software	running	on	devices	designed	to	detect	sudden	changes	in	ARP	table
entries.	Since	you’ll	most	likely	use	ARP	cache	poisoning	to	capture	packets



on	networks	 you	 are	 analyzing,	 it’s	 important	 to	 know	how	 this	 technique
can	be	used	against	you	as	well.

Figure	12-11:	The	change	in	target	MAC	address	shows	this	attack	was	a	success.

Session	Hijacking

sessionhijacking.pcapng

Now	 that	 you	 know	how	ARP	 cache	 poisoning	 can	 be	 used	maliciously,	 I
want	 to	 demonstrate	 a	 technique	 that	 can	 take	 advantage	 of	 it:	 session



hijacking.	 In	 session	 hijacking,	 an	 attacker	 compromises	 an	HTTP	 session
cookie,	 which	 we’ll	 learn	 about	 soon,	 and	 uses	 it	 to	 impersonate	 another
user.	 To	 accomplish	 this,	 an	 attacker	 can	 use	 ARP	 cache	 poisoning	 to
intercept	a	target’s	traffic	and	find	relevant	session	cookie	information.	The
attacker	can	then	use	that	information	to	access	the	target	web	application	as
the	target	user.

This	 scenario	 begins	 with	 the	 file	 sessionhijacking.pcapng.	 This	 capture
contains	 the	 traffic	 of	 a	 target	 (172.16.16.164)	 communicating	with	 a	web
application	 (172.16.16.181).	 Unbeknownst	 to	 the	 target,	 they	 have	 fallen
prey	 to	 an	 attacker	 (172.16.16.154)	 who	 is	 actively	 intercepting	 their
communications.	These	packets	were	collected	 from	 the	perspective	of	 the
web	 server,	which	 is	 likely	 the	 same	 viewpoint	 a	 defender	would	 have	 if	 a
session-hijacking	attack	were	used	against	their	server	infrastructure.

NOTE

The	web	application	being	accessed	here	is	called	Damn	Vulnerable	Web
Application	(DVWA).	It	is	intentionally	vulnerable	to	many	types	of	attacks
and	is	used	frequently	as	a	teaching	tool.	If	you’d	like	to	learn	more	about	web
application	attacks	or	investigate	packets	associated	with	them,	you	can	learn
more	about	DVWA	at	http://www.dvwa.co.uk/.

The	traffic	 in	this	capture	consists	primarily	of	two	conversations.	The
first	 is	 the	 communication	 from	 the	 target	 to	 web	 server,	 which	 can	 be
isolated	 with	 the	 filter	 ip.addr == 172.16.16.164 && ip.addr ==
172.16.16.181.	 This	 communication	 represents	 normal	 web-browsing
traffic	and	isn’t	particularly	special.	Of	particular	interest	is	the	cookie	value
in	the	requests.	For	instance,	if	you	look	at	a	GET	request	such	as	the	one	in
packet	14,	 you	will	 find	 the	 cookie	 listed	 in	 the	Packet	Details	window,	 as
shown	in	Figure	12-12.	In	this	case,	the	cookie	identifies	the	session	ID	with
a	PHPSESSID	value	of	ncobrqrb7fj2a2sinddtk567q4	➊.

http://www.dvwa.co.uk/


Figure	12-12:	Viewing	the	target’s	session	cookie

Websites	use	cookies	to	maintain	session	awareness	for	individual	hosts.
When	 a	 new	 visitor	 comes	 to	 a	website,	 they	 are	 issued	 a	 session	 ID	 that
uniquely	 identifies	 them	 (the	 PHPSESSID).	 For	 authentication,	 many
applications	wait	until	a	user	with	a	session	ID	has	successfully	authenticated
to	 the	 app,	 and	 then	 they	 create	 a	 database	 record	 recognizing	 that	 ID	 as
being	representative	of	an	authenticated	session.	Any	user	with	that	ID	will
be	 able	 to	 access	 the	 app	 with	 that	 authentication.	 Of	 course,	 developers
want	to	believe	that	only	a	single	user	would	have	a	specific	ID	because	the
IDs	 are	 uniquely	 generated.	 This	 method	 of	 handling	 session	 IDs	 is
insecure,	however,	because	it	allows	a	malicious	user	to	steal	another	user’s
ID	and	use	it	to	impersonate	them.	There	are	methods	that	can	be	used	to
prevent	session-hijacking	techniques,	but	many	websites,	including	DVWA,
are	still	vulnerable.

The	 target	 doesn’t	 realize	 that	 their	 traffic	 is	 being	 intercepted	 by	 an
attacker	 or	 that	 the	 attacker	 has	 access	 to	 the	 session	 cookie,	 as	 shown	 in
Figure	12-12.	All	the	attacker	has	to	do	is	communicate	with	the	web	server
using	that	cookie	value.	This	task	can	be	accomplished	with	certain	types	of
proxy	 servers,	 but	 it	 is	 made	 even	 easier	 by	 using	 browser	 plugins	 like
Cookie	Manager	for	Chrome.	Using	this	plugin,	the	attacker	can	specify	the
PHPSESSID	value	obtained	from	the	target’s	traffic,	as	shown	in	Figure	12-
13.



Figure	12-13:	Using	the	Cookie	Manager	plugin	to	impersonate	the	target

If	 you	 clear	 the	 filter	 previously	 applied	 to	 the	 capture	 file	 and	 start
scrolling	 down,	 eventually	 you’ll	 see	 the	 attacker’s	 IP	 address
communicating	 with	 the	 web	 server.	 You	 can	 limit	 your	 view	 to	 this
communication	using	the	filter	ip.addr == 172.16.16.154 && ip.addr ==
172.16.16.181.

Before	we	dig	 into	 this	 further,	 let’s	 add	a	 column	 to	 show	 the	cookie
values	in	the	Packet	List	pane.	If	you	added	columns	as	part	of	the	previous
section	 on	 ARP	 cache	 poisoning,	 you	 should	 remove	 those	 first.	 Then
proceed	to	use	the	instructions	from	the	ARP	cache-poisoning	section	to	add
the	 new	 custom	 column	 field	 based	 on	 the	 field	 name	 http.cookie_pair.
Once	you’ve	added	the	column,	position	it	after	the	Destination	field.	Your
screen	should	look	like	Figure	12-14.



Figure	12-14:	Configuring	columns	to	investigate	session	hijacking

With	 the	 new	 columns	 configured,	 modify	 the	 display	 filter	 to	 show
only	HTTP	 requests,	 as	 TCP	 communication	 isn’t	 useful	 here.	 The	 new
filter	 is	 (ip.addr==172.16.16.154 && ip.addr==172.16.16.181) &&
(http.request.method || http.response.code).	 The	 resulting	 packets
are	shown	in	Figure	12-15.

Figure	12-15:	The	attacker	impersonating	the	target	user

You	 are	 now	 looking	 at	 communication	 between	 the	 attacker	 and	 the
server.	In	the	first	four	packets,	the	attacker	requests	the	/dvwa/	directory	➊
and	receives	a	302	response	code	in	return,	which	is	a	normal	method	web
servers	use	to	redirect	visitors	to	different	URLs	on	a	server.	In	this	case,	the
attacker	gets	redirected	to	the	login	page	at	/dvwa/login.php	➋.	The	attacker’s
machine	 requests	 the	 login	page	➌,	which	 is	 returned	 successfully	➍.	Both
requests	use	the	session	ID	lup70ajeuodkrhrvbmsjtgrd71.

Following	that,	there	is	a	new	request	for	the	/dvwa/	directory,	but	this
time,	 take	 note	 of	 the	 different	 session	 ID	 ➎.	 The	 session	 ID	 is	 now



ncobrqrb7fj2a2sinddtk567q4,	 which	 is	 the	 same	 one	 the	 target	 used	 earlier.
This	indicates	the	attacker	has	manipulated	the	traffic	to	use	the	stolen	ID.
Instead	 of	 being	 redirected	 to	 the	 login	 page,	 the	 request	 is	 met	 with	 an
HTTP	200	status	code,	and	the	page	is	delivered	as	the	authenticated	target
would	see	it	➏.	The	attacker	browses	to	another	page,	dvwa/setup.php,	using
the	target’s	ID	➐,	and	that	page	also	returns	successfully	➑.	The	attacker	is
browsing	 the	 DVWA	 website	 as	 though	 they	 were	 authenticated	 as	 the
target.	This	is	all	without	knowing	the	target’s	username	or	password.

This	is	just	one	example	of	how	an	attacker	can	turn	packet	analysis	into
an	offensive	tool.	In	general,	it’s	safe	to	assume	that	if	an	attacker	can	see	the
packets	associated	with	your	communication,	some	type	of	malicious	activity
can	result.	This	is	one	reason	security	professionals	advocate	for	protecting
data	in	transit	through	encryption.

Malware
While	 perfectly	 legitimate	 software	 can	 be	 used	 for	 malicious	 purposes,
malware	 is	 a	 term	usually	 reserved	 for	code	 that	 is	written	 specifically	with
malicious	intent.	Malware	can	take	many	shapes	and	forms,	including	worms
that	 are	 self-propagating	 and	 trojan	 horses	 that	 masquerade	 as	 legitimate
software.	 From	 a	 network	 defender’s	 view,	 most	 malware	 is	 undiscovered
and	unknown	until	 it	 can	be	 captured	 and	 analyzed.	This	 analysis	 involves
multiple	 steps,	 including	 one	 focused	 on	 a	 behavioral	 analysis	 of	 the
malware’s	 network	 communication	patterns.	 In	 some	 cases,	 analysis	 occurs
in	a	 forensic	malware	 reverse-engineering	 lab,	but	more	often,	 it	occurs	 in
the	wild	when	a	security	analyst	discovers	a	device	on	their	network	that	has
become	infected.

In	 this	 section,	we	will	 look	 at	 a	 few	examples	of	 real	malware	 and	 its
behavior,	as	observed	through	packets.

Operation	Aurora

aurora.pcapng

In	January	2010,	Operation	Aurora	was	discovered	to	have	exploited	an	as	of
then	unknown	vulnerability	in	Internet	Explorer.	This	vulnerability	allowed



attackers	 to	 gain	 remote	 control	 of	 targeted	 machines	 at	 Google,	 among
other	companies.

For	 this	malicious	code	 to	be	executed,	a	user	 simply	needed	 to	visit	 a
website	using	a	vulnerable	version	of	Internet	Explorer.	The	attackers	then
had	immediate	access	to	the	user’s	machine	with	the	same	privileges	as	the
logged-in	 user.	 Spear	 phishing,	 in	 which	 attackers	 send	 an	 email	 message
designed	to	get	recipients	to	click	a	link	leading	to	a	malicious	site,	was	used
to	lure	the	targets.

In	the	case	of	Aurora,	we	pick	up	this	story	as	soon	as	the	targeted	user
clicks	 the	 link	 in	 the	 spear-phishing	 email.	 The	 resulting	 packets	 are
contained	in	the	file	aurora.pcapng.

This	 capture	 begins	 with	 a	 three-way	 handshake	 between	 the	 target
(192.168.100.206)	and	the	attacker	(192.168.100.202).	The	initial	connection
is	 to	 port	 80,	 which	 would	 lead	 us	 to	 believe	 this	 is	 HTTP	 traffic.	 That
assumption	is	confirmed	in	the	fourth	packet,	which	is	an	HTTP	GET	request
for	/info	➊,	as	shown	in	Figure	12-16.

As	shown	in	Figure	12-17,	the	attacker’s	machine	acknowledges	receipt
of	the	GET	request	and	reports	a	response	code	of	302	(Moved	Temporarily)
in	 packet	 6	➊,	 the	 status	 code	 commonly	 used	 to	 redirect	 a	 browser	 to
another	 page,	 as	 is	 the	 case	 here.	 Along	 with	 the	 302	 response	 code,	 a
Location	field	specifies	the	location	/info?rFfWELUjLJHpP	➋.

Figure	12-16:	The	target	makes	a	GET	request	for	/info.



Figure	12-17:	The	client	browser	is	redirected	with	this	packet.

After	 receiving	 the	HTTP	 302	 packet,	 the	 client	 initiates	 another	 GET
request	to	the	/info?rFfWELUjLJHpP	URL	in	packet	7,	for	which	an	ACK	is
received	in	packet	8.	Following	the	ACK,	the	next	several	packets	represent
data	being	transferred	from	the	attacker	to	the	target.	To	take	a	closer	look
at	 that	data,	 right-click	one	of	 the	packets	 in	 the	 stream,	 such	as	packet	9,
and	select	Follow	▶	TCP	Stream.	In	this	stream	output,	we	see	the	initial
GET	 request,	 the	 302	 redirection,	 and	 the	 second	 GET	 request,	 as	 shown	 in
Figure	12-18.

After	 this,	 things	 start	 getting	 really	 strange.	The	 attacker	 responds	 to
the	 GET	 request	 with	 some	 very	 odd-looking	 content,	 the	 first	 section	 of
which	is	shown	in	Figure	12-19.



Figure	12-18:	The	data	stream	being	transmitted	to	the	client



Figure	12-19:	This	scrambled	content	within	a	<script>	tag	appears	to	be	encoded.

This	content	appears	to	be	a	series	of	random	numbers	and	letters	inside
a	<script>	tag	➊.	The	<script>	tag	is	used	within	HTML	to	denote	the	use	of	a
higher-level	 client-side	 scripting	 language	 whose	 code	 is	 executed	 on	 the
HTTP	 client.	 Within	 this	 tag,	 you	 normally	 see	 various	 scripting
statements.	But	the	gibberish	here	indicates	that	the	content	may	be	encoded
to	hide	it	from	detection.	Since	we	know	this	is	exploit	traffic,	we	can	assume
that	 this	 obfuscated	 section	 of	 text	 contains	 the	 hexadecimal	 padding	 and
shellcode	used	to	exploit	the	vulnerable	service.

NOTE

Script	obfuscation	is	a	common	technique	used	by	malware	to	evade	detection
and	hide	malicious	content.	While	deobfuscating	scripts	is	beyond	the	scope	of



this	book,	it’s	a	skill	you’ll	develop	if	you	continue	to	examine	malware
communication.	Many	skilled	malware	analysts	can	recognize	malicious	scripts
instantly	with	a	quick	visual	inspection.	If	you	want	to	challenge	yourself,	try
to	manually	deobfuscate	the	script	found	in	this	example.

In	 the	 second	portion	of	 the	 content	 sent	 from	 the	 attacker,	 shown	 in
Figure	 12-20,	 we	 finally	 see	 some	 text	 that	 is	 readable.	 Even	 without
extensive	programming	knowledge,	we	 can	 see	 that	 this	 text	 appears	 to	do
some	 string	 parsing	 based	 on	 a	 few	 variables.	 This	 is	 the	 last	 bit	 of	 text
before	the	closing	</script>	tag.

Figure	12-20:	This	portion	of	the	content	sent	from	the	server	contains	readable	text	and	a
suspicious	iframe.

The	 last	 section	 of	 data	 sent	 from	 attacker	 to	 client,	 also	 shown	 in



Figure	 12-20,	 has	 two	 parts.	 The	 first	 is	 the	 <span id="vhQYFCtoDnOzUOuxAflDS

zVMIHYhjJojAOCHNZtQdlxSPFUeEthCGdRtiIY">	section	➊.	The	second,	contained	within
the	 <span></span>	 tags,	 is	 <iframe src="/infowTVeeGDYJWNfsrdrvXiYApnuPoC

MjRrSZuKtbVgwuZCXwxKjtEclbPuJPPctcflhsttMRrSyxl.gif" onload="WisgEgTNEfaONekE

qaMyAUALLMYW(event)" />	➋.	Once	again,	this	content	may	be	a	sign	of	malicious
activity	due	 to	 the	 suspiciously	 long	and	random	strings	of	unreadable	and
potentially	obfuscated	text.

The	 portion	 of	 the	 code	 contained	 within	 the	 <span>	 tag	 is	 an	 iframe,
which	 is	 a	 common	 method	 used	 by	 attackers	 to	 embed	 additional
unexpected	content	 into	an	HTML	page.	The	<iframe>	 tag	creates	an	inline
frame	 that	 can	 go	 undetected	 by	 the	 user.	 In	 this	 case,	 the	 <iframe>	 tag
references	 an	 oddly	 named	GIF	 file.	 As	 shown	 in	 Figure	 12-21,	when	 the
target’s	browser	sees	the	reference	to	this	file,	it	makes	a	GET	request	for	it	in
packet	21	➊,	and	the	GIF	is	sent	immediately	following	that	➋.

Figure	12-21:	The	GIF	specified	in	the	iframe	is	requested	and	downloaded	by	the	target.

The	most	 peculiar	 part	 of	 this	 capture	 occurs	 at	 packet	 25,	 when	 the
target	initiates	a	connection	back	to	the	attacker	on	port	4321.	Viewing	this
second	stream	of	communication	from	the	Packet	Details	pane	doesn’t	yield
much	 information,	 so	 we	 will	 once	 again	 view	 the	 TCP	 stream	 to	 get	 a
clearer	 picture	 of	 the	 data	 being	 communicated.	 Figure	 12-22	 shows	 the
Follow	TCP	Stream	window	output.

In	this	display,	we	see	something	that	should	set	off	immediate	alarms:	a
Windows	command	shell	➊.	This	shell	is	sent	from	the	target	to	the	server,
indicating	that	the	attacker’s	exploit	attempt	succeeded	and	the	payload	was
dropped.	The	client	transmitted	a	command	shell	back	to	the	attacker	once
the	 exploit	 was	 launched.	 In	 this	 capture,	 we	 can	 even	 see	 the	 attacker
interacting	 with	 the	 target	 by	 entering	 the	 dir	 command	 ➋	 to	 view	 a
directory	listing	on	the	target’s	machine	➌.

Assuming	 the	 exploit	 has	 compromised	 a	 process	 running	 as	 an
administrator	 or	migrated	 into	 one,	 the	 attacker	 can	 do	 virtually	 anything
they	wish	 to	 the	 target’s	machine.	With	 just	 a	 single	 click,	 in	 a	matter	 of
seconds,	 the	 target	 has	 given	 complete	 control	 of	 their	 computer	 to	 an



attacker.
Exploits	like	this	are	typically	encoded	to	be	unrecognizable	when	going

across	the	wire	to	prevent	them	from	being	picked	up	by	the	network	IDS.
As	 such,	 without	 prior	 knowledge	 of	 this	 exploit	 or	 even	 a	 sample	 of	 the
exploit	 code,	 it	might	 be	 difficult	 to	 tell	 exactly	what	 is	 happening	 on	 the
target’s	 system	without	 further	 analysis.	Luckily,	we	were	 able	 to	 pick	 out
some	 tell-tale	 signs	of	malicious	 code	 in	 this	packet	 capture.	This	 includes
the	obfuscated	text	in	the	<script>	tags,	the	peculiar	iframe,	and	the	command
shell	seen	in	plaintext.

Figure	12-22:	The	attacker	is	interacting	with	a	command	shell	through	this	connection.

Here	is	a	summary	of	how	the	Aurora	exploit	worked	here:

•					The	target	receives	an	email	from	the	attacker	that	appears	to	be
legitimate,	clicks	a	link	within	it,	and	sends	a	GET	request	to	the	attacker’s
malicious	site.



•					The	attacker’s	web	server	issues	a	302	redirection	to	the	target,	and	the
target’s	browser	automatically	issues	a	GET	request	to	the	redirected
URL.

•					The	attacker’s	web	server	transmits	a	web	page	containing	obfuscated
JavaScript	code	to	the	client	that	includes	a	vulnerability	exploit	and	an
iframe	containing	a	link	to	a	GIF	image,	which	is	requested.

•					The	JavaScript	code	transmitted	earlier	is	deobfuscated	when	the	page	is
rendered	in	the	target’s	browser,	and	the	code	executes	on	their
machine,	exploiting	a	vulnerability	in	Internet	Explorer.

•					Once	the	vulnerability	is	exploited,	the	payload	hidden	within	the
obfuscated	code	is	executed,	opening	a	new	session	from	the	target	to
the	attacker	on	port	4321.

•					A	command	shell	is	spawned	from	the	payload	and	shoveled	back	to	the
attacker,	so	that	they	may	interact	with	it.

From	a	defender’s	point	of	view,	we	can	use	this	capture	file	to	create	a
signature	 for	 our	 IDS	 that	 might	 help	 detect	 further	 occurrences	 of	 this
attack.	For	example,	we	might	filter	on	a	nonobfuscated	part	of	the	capture,
such	as	the	plaintext	code	at	the	end	of	the	obfuscated	text	in	the	<script>	tag.
Another	idea	might	be	to	write	a	signature	for	all	HTTP	traffic	with	a	302
redirection	to	a	site	with	info	in	the	URL.	This	signature	would	need	some
additional	 tuning	to	be	viable	 in	a	production	environment,	but	 it’s	a	good
start.	 Of	 course,	 it’s	 also	 important	 to	 remember	 that	 signatures	 can	 be
defeated.	If	the	attacker	simply	changes	a	few	of	the	strings	we’ve	observed
here	 or	 delivers	 the	 exploit	 through	 another	 mechanism,	 our	 signatures
could	 be	 rendered	 useless.	 Thus	 is	 waged	 the	 eternal	 struggle	 between
attackers	and	defenders.

NOTE

The	ability	to	create	traffic	signatures	based	on	malicious	traffic	samples	is	a
crucial	step	for	someone	attempting	to	defend	a	network	against	unknown
threats.	Analyzing	captures	such	as	the	one	described	here	are	a	great	way	to
develop	skills	in	writing	those	signatures.	To	learn	more	about	intrusion
detection	and	attack	signatures,	visit	the	Snort	project	at
http://www.snort.org/.

http://www.snort.org/


Remote-Access	Trojan

ratinfected.pcapng

So	far,	we’ve	examined	security	events	with	some	prior	knowledge	of	what	is
going	on.	This	is	a	great	way	to	learn	what	attacks	look	like,	but	it’s	not	very
real	 world.	 In	 most	 real-world	 scenarios,	 people	 tasked	 with	 defending	 a
network	won’t	examine	every	packet	 that	goes	across	 the	network.	 Instead,
they	will	use	some	form	of	IDS	to	alert	them	to	anomalies	in	network	traffic
that	warrant	further	examination	based	on	a	predefined	attack	signature.

In	the	next	example,	we’ll	begin	with	a	simple	alert,	as	if	we’re	the	real-
world	analyst.	In	this	case,	our	IDS	generates	this	alert:

[**] [1:132456789:2] CyberEYE RAT Session Establishment [**]
[Classification: A Network Trojan was detected] [Priority: 1]
07/18-12:45:04.656854 172.16.0.111:4433 -> 172.16.0.114:6641
TCP TTL:128 TOS:0x0 ID:6526 IpLen:20 DgmLen:54 DF
***AP*** Seq: 0x53BAEB5E Ack: 0x18874922 Win: 0xFAF0 TcpLen: 20

Our	next	step	is	to	view	the	signature	rule	that	triggered	this	alert:

alert tcp any any -> $HOME_NET any (msg:"CyberEYE RAT Session Establishment";
content:"|41 4E 41 42 49 4C 47 49 7C|"; classtype:trojan-activity;
sid:132456789; rev:2;)

This	 rule	 is	 set	 to	 alert	 whenever	 it	 sees	 a	 packet	 from	 any	 network
entering	the	internal	network	with	the	hexadecimal	content	41 4E 41 42 49 4C
47 49 7C,	which	converts	to	ANA	BILGI	in	human-readable	ASCII.	When	it	is
detected,	 an	 alert	 fires,	 signifying	 the	 possible	 presence	 of	 the	 CyberEYE
remote-access	trojan	(RAT).	RATs	are	malicious	programs	that	run	silently	on
a	target’s	computer	and	provide	a	means	for	the	attacker	to	remotely	access
the	target’s	machine.

NOTE

CyberEYE	is	a	once	popular	Turkish-born	tool	used	to	create	RAT	executables
and	administer	compromised	hosts.	Ironically,	the	Snort	rule	seen	here	fires	on
the	string	ANA	BILGI,	which	is	Turkish	for	BASIC	INFORMATION.

Now	we’ll	look	at	some	traffic	associated	with	the	alert	in	ratinfected.pcapng.
This	Snort	alert	would	typically	capture	only	the	single	packet	that	triggered



the	 alert,	 but	 fortunately	 we	 have	 the	 entire	 communication	 sequence
between	 the	 hosts.	 To	 skip	 to	 the	 punch	 line,	 search	 for	 the	 hexadecimal
string	mentioned	in	the	Snort	rule,	as	follows:

1.	 Select	Edit	▶	Find	Packet	or	press	CTRL-F.

2.	 Select	the	Hex	Value	option	from	the	drop-down	menu.

3.	 Enter	the	value	41 4E 41 42 49 4C 47 49 7C	into	the	text	area.

4.	 Click	Find.

As	 shown	 in	Figure	12-23,	 you	 should	now	 see	 the	 first	occurrence	of
the	hexadecimal	string	in	the	data	portion	of	packet	4	➊.

Figure	12-23:	The	content	string	in	the	Snort	alert	is	first	seen	here	in	packet	4.

If	you	select	Find	 several	more	 times,	you	will	 see	 that	 this	 string	also
occurs	in	packets	5,	10,	32,	156,	280,	405,	531,	and	652.	Although	all	of	the
communication	 in	 this	 capture	 file	 is	 between	 the	 attacker	 (172.16.0.111)
and	target	(172.16.0.114),	 it	appears	as	though	some	instances	of	the	string
occur	in	different	conversations.	While	packets	4	and	5	are	communicating
using	ports	4433	and	6641,	most	of	the	other	instances	occur	between	port
4433	 and	 other	 randomly	 selected	 ephemeral	 ports.	We	 can	 confirm	 that
multiple	conversations	exist	by	looking	at	the	TCP	tab	of	the	Conversations
window,	as	shown	in	Figure	12-24.

We	can	visually	separate	the	different	conversations	 in	this	capture	file
by	colorizing	them,	as	follows:

1.	 In	the	filter	dialog	above	the	Packet	List	pane,	type	the	filter
(tcp.flags.syn == 1) && (tcp.flags.ack == 0).	Then	press
ENTER.	This	will	select	the	initial	SYN	packet	for	each	conversation	in



the	traffic.

2.	 Right-click	the	first	packet	and	select	Colorize	Conversation.

3.	 Select	TCP	and	then	select	a	color.

4.	 Repeat	this	process	for	the	remaining	SYN	packets,	choosing	a	different
color	for	each.

5.	 When	finished,	click	X	to	remove	the	filter.

Figure	12-24:	Three	individual	conversations	exist	between	the	attacker	and	target.

Having	 colorized	 the	 conversations,	we	 can	 clear	 the	 filter	 to	 see	how
they	 relate	 to	 each	 other,	 helping	 us	 to	 track	 the	 communication	 process
between	the	two	hosts.	The	first	conversation	(ports	6641/4433)	is	where	the
communication	between	 the	 two	hosts	begins,	 so	 it’s	a	good	place	 to	 start.
Right-click	 any	 packet	 within	 the	 conversation	 and	 select	 Follow	 TCP
Stream	to	see	the	data	that	was	transferred,	as	shown	in	Figure	12-25.



Figure	12-25:	The	first	conversation	yields	interesting	results.

Immediately,	 we	 see	 that	 the	 text	 string	 ANABILGI|556	 is	 sent	 from	 the
attacker	 to	 the	 target	➊.	 As	 a	 result,	 the	 target	 responds	 with	 some	 basic
system	 information,	 including	 the	 computer	 name	 (CSANDERS-6F7F77)	 and	 the
operating	 system	 in	 use	 (Windows XP Service Pack 3)	➋,	 and	begins	 repeatedly
transmitting	 the	 string	 BAGLIMI?	 back	 to	 the	 attacker	 ➌.	 The	 only
communication	 back	 from	 the	 attacker	 is	 the	 string	 CAPSCREEN60	 ➍,	 which
appears	six	times.

This	CAPSCREEN60	string	returned	by	the	attacker	is	interesting,	so	let’s	see
where	 it	 leads.	To	 do	 so,	make	 sure	 you’ve	 cleared	 any	 display	 filters	 and
search	 for	 the	 text	 string	 CAPSCREEN60	 within	 the	 packets	 using	 the	 search
dialog,	specifying	the	String	option	and	ensuring	the	Packet	bytes	option	is
selected	for	where	to	perform	the	search.

Upon	performing	this	search,	we	find	the	first	 instance	of	the	string	in
packet	27.	The	intriguing	thing	about	this	bit	of	information	is	that	as	soon
as	the	string	is	sent	from	the	attacker	to	the	client,	the	client	acknowledges



receipt	 of	 the	 packet,	 and	 a	 new	 conversation	 is	 started	 in	 packet	 29.	You
should	be	able	to	more	easily	notice	the	new	conversation	starting	because	of
the	coloring	rules	that	were	applied	earlier.

Now,	 if	 we	 follow	 the	 TCP	 stream	 output	 of	 this	 new	 conversation
(shown	 in	Figure	12-26),	we	 see	 the	 familiar	 string	 ANABILGI|12,	 followed	by
the	 string	 SH|556	 and,	 finally,	 the	 string	 CAPSCREEN|C:\WINDOWS\jpgevhook.dat|84972
➊.	Notice	the	file	path	specified	after	the	CAPSCREEN	string,	which	is	followed
by	 unreadable	 text.	The	most	 intriguing	 thing	 here	 is	 that	 the	 unreadable
text	is	prepended	by	the	string	JFIF	➋,	which	a	quick	Google	search	will	tell
you	is	commonly	found	at	the	beginning	of	JPG	files.

Figure	12-26:	The	attacker	appears	to	be	initiating	a	request	for	a	JPG	file.

At	this	point,	it’s	safe	to	conclude	that	the	attacker	initiated	the	request
to	transfer	this	JPG	image.	But	even	more	importantly,	we	are	beginning	to
see	a	command	structure	evolve	from	the	traffic.	It	appears	that	CAPSCREEN	is	a



command	 sent	 by	 the	 attacker	 to	 initiate	 the	 transfer	 of	 this	 JPG.	 In	 fact,
whenever	 the	 CAPSCREEN	 command	 is	 sent,	 the	 result	 is	 the	 same.	 To	 verify
this,	view	the	TCP	stream	of	each	conversation	where	the	CAPSCREEN	command
is	present	or	try	using	Wireshark’s	IO	graphing	feature	as	follows:

1.	 Select	Statistics	▶	IO	Graph.

2.	 Click	the	plus	(+)	button	to	add	five	lines.

3.	 Insert	the	filters	tcp.stream eq 2,	tcp.stream eq 3,	tcp.stream eq
4,	tcp.stream eq 5,	and	tcp.stream eq 6,	respectively,	into	the
Display	Filter	of	the	five	newly	added	lines.	Give	each	one	a	name	as
well.

4.	 Change	the	y-axis	scale	for	each	entry	to	Bytes/s.

5.	 Click	the	Graph	1,	Graph	2,	Graph	3,	Graph	4,	and	Graph	5	buttons
to	enable	the	data	points	for	the	filters	specified.

Figure	12-27	shows	the	resulting	graph.

Figure	12-27:	This	graph	shows	that	similar	activity	appears	to	repeat.



Based	 on	 this	 graph,	 it	 appears	 as	 though	 each	 conversation	 contains
roughly	the	same	amount	of	data	and	occurs	 for	 the	same	amount	of	 time.
We	can	now	conclude	that	this	activity	repeats	several	times.

You	 may	 already	 have	 some	 ideas	 regarding	 the	 content	 of	 the	 JPG
image	 being	 transferred,	 so	 let’s	 see	 if	 we	 can	 view	 one	 of	 these	 files.	To
extract	the	JPG	data	from	Wireshark,	perform	the	following	steps:

1.	 First,	follow	the	TCP	stream	of	the	appropriate	packets	as	we	did	with
Figure	12-25.	Packet	29	is	a	good	choice.

2.	 The	communication	must	be	isolated	so	that	we	see	only	the	stream	of
data	sent	from	the	target	to	the	attacker.	Do	this	by	selecting	the	arrow
next	to	the	drop-down	that	says	Entire Conversation (85033 bytes).
Be	sure	to	select	the	appropriate	directional	traffic,	which	is
172.16.0.114:6643 --> 172.16.0.111:4433 (85 kB).

3.	 In	the	Show	data	as	drop-down,	choose	RAW.

4.	 Save	the	data	by	clicking	the	Save	As	button,	ensuring	that	you	save	the
file	with	a	.jpg	file	extension.

If	you	try	to	open	the	 image	now,	you	may	be	surprised	to	find	that	 it
won’t	open.	That’s	because	we	have	one	more	step	to	perform.	Unlike	 the
scenario	 in	Chapter	10	where	we	extracted	a	 file	 cleanly	 from	FTP	traffic,
the	traffic	here	added	some	additional	content	to	the	data.	In	this	case,	the
first	 two	 lines	 seen	 in	 the	 TCP	 stream	 are	 actually	 part	 of	 the	malware’s
command	sequence,	not	part	of	the	data	that	makes	up	the	JPG	(see	Figure
12-28).	When	we	saved	the	stream,	this	extraneous	data	was	also	saved.	As	a
result,	the	file	viewer	that	is	looking	for	a	JPG	file	header	is	seeing	content
that	 doesn’t	 match	 what	 it	 is	 expecting,	 and	 therefore	 it	 can’t	 open	 the
image.



Figure	12-28:	The	extraneous	data	added	by	the	malware	prevents	the	file	from	being	opened
correctly.

Fixing	 this	 issue	 is	 a	 painless	 process,	 requiring	 a	 bit	 of	manipulation
with	a	hex	editor.	This	process	 is	called	 file	 carving.	To	carve	this	file	from
the	exported	data,	complete	the	following	process:

1.	 While	viewing	the	TCP	Stream	in	Figure	12-28,	click	the	Save	as
button.	Choose	a	memorable	filename	and	save	the	file	to	a	location
where	you	can	access	it	again	shortly.

2.	 Download	and	then	install	WinHex	from	https://www.x-
ways.net/winhex/.

3.	 Execute	WinHex	and	open	the	file	you	just	saved	from	Wireshark.

4.	 Use	your	mouse	to	select	all	the	extraneous	data	at	the	beginning	of	the
file.	This	should	be	everything	occurring	before,	but	not	including,	the
bytes	FF D8 FF E0,	which	signify	the	start	of	a	new	JPG	file.	The	bytes	to

https://www.x-ways.net/winhex/


select	are	highlighted	in	Figure	12-29.

Figure	12-29:	Removing	the	extraneous	bytes	from	the	JPG	file

5.	 Press	the	Delete	key	to	remove	the	selected	data.

6.	 Click	the	Save	button	in	WinHex’s	main	toolbar	to	save	your	changes.

NOTE

I	like	WinHex	for	performing	this	task	on	Windows,	but	any	hex	editor	you’re
familiar	with	will	do.

With	 the	unneeded	bytes	of	data	 removed,	you	 should	now	be	able	 to
open	the	 file.	 It	 should	be	clear	 that	 the	 trojan	 is	 taking	screen	captures	of
the	target’s	desktop	and	transmitting	them	back	to	the	attacker	(Figure	12-
30).	 After	 these	 communication	 sequences	 have	 completed,	 the
communication	ends	with	a	normal	TCP	teardown	sequence.

This	 scenario	 is	 a	 prime	 example	 of	 the	 thought	 process	 an	 intrusion
analyst	would	follow	when	analyzing	traffic	based	on	an	IDS	alert:

•					Examine	the	alert	and	the	signature	that	generated	it.
•					Confirm	whether	the	signature	match	was	in	the	traffic	in	the	proper

context.
•					Examine	traffic	to	find	out	what	the	attacker	did	with	the	compromised

machine.
•					Begin	containment	of	the	issue	before	any	more	sensitive	information

leaks	from	the	compromised	target.



Figure	12-30:	The	JPG	being	transferred	is	a	screen	capture	of	the	target’s	computer.

Exploit	Kit	and	Ransomware

cryptowall4_c2.pcapng,	ek_to_cryptowall4.pcapng

In	our	final	scenario,	we’ll	look	at	another	investigation	that	begins	with	an
alert	from	an	IDS.	We’ll	explore	the	live	packets	being	generated	from	the
infected	 system	 and	 then	 attempt	 to	 trace	 the	 source	 of	 the	 compromise.
This	 example	 will	 utilize	 real	 malware	 that	 you	 would	 be	 likely	 to	 find
infecting	a	device	in	your	network.

The	 story	beings	with	 an	 IDS	alert	generated	 from	Snort	 in	 the	Sguil
console,	 shown	 in	Figure	12-31.	Sguil	 is	 a	 tool	 used	 to	manage,	 view,	 and
investigate	IDS	alerts	from	one	or	more	sensors.	It	doesn’t	provide	the	most
attractive	 user	 interface,	 but	 it’s	 been	 around	 for	 a	 while	 and	 is	 a	 very
popular	tool	for	security	analysts.

There	 is	 a	 lot	 of	 information	 about	 this	 alert	 available	 in	 Sguil.	 The



upper	window	➊	 shows	a	summary	of	 the	alert.	Here	you	see	 the	 time	the
alert	was	generated,	 the	 source	and	destination	 IP	addresses	and	ports,	 the
protocol,	 and	 the	 event	 message	 generated	 from	 the	 matching	 IDS
signature.	 In	 this	 case,	 192.168.122.145,	 the	 local	 friendly	 system,	 is
communicating	 with	 an	 unknown	 external	 system	 at	 184.170.149.44	 over
port	 80,	 which	 is	 commonly	 associated	 with	 HTTP	 traffic.	 The	 external
system	 is	 assumed	 to	 be	 hostile	 since	 it	 has	 shown	 up	 in	 relation	 to	 a
signature	indicating	malicious	communication	and	very	little	is	known	about
it.	The	signature	that	matched	this	traffic	is	representative	of	check-in	traffic
from	 the	 CryptoWall	 malware	 family,	 suggesting	 that	 a	 strain	 of	 this
malware	is	installed	on	the	friendly	system.

Figure	12-31:	This	IDS	alert	indicates	a	CryptoWall	4	infection.

The	Sguil	 console	provides	 the	 syntax	of	 the	matching	 rule	➋	 and	 the
individual	 packet	 data	 that	 matched	 the	 rule	 ➌.	 Notice	 that	 the	 packet
information	 is	broken	down	into	protocol	header	and	data	sections,	similar
to	how	packet	 information	 is	presented	 in	Wireshark.	Unfortunately,	Sguil



only	provides	information	about	a	single	packet	that	matched,	and	we	need
to	 dig	 deeper.	The	 next	 step	 is	 to	 examine	 the	 traffic	 associated	with	 this
alert	in	Wireshark	to	attempt	to	validate	the	traffic	and	see	what’s	going	on.
That	traffic	is	contained	in	the	file	cryptowall4_c2.pcapng.

This	 packet	 capture	 contains	 the	 communication	 that	 was	 happening
around	 the	 time	 of	 the	 alert,	 and	 it	 isn’t	 overly	 complex.	 The	 first
conversation	 occurs	 in	 packets	 1	 through	 16,	 and	we	 can	 view	 it	 easily	 by
following	the	TCP	stream	of	that	conversation	(Figure	12-32).	At	the	start
of	the	capture,	the	local	system	opens	a	TCP	connection	to	the	hostile	host
on	 port	 80	 and	 makes	 a	 POST	 request	 to	 the	 URL
http://homealldaylong.com/76N1Lm.php?x4tk7t4jo6	 ➊	 containing	 a	 small
amount	 of	 alphanumeric	 data	 ➋.	 The	 hostile	 host	 responds	 with	 an
alphanumeric	 string	 ➍	 and	 an	 HTTP 200 OK	 response	 code	 ➌	 before	 the
connection	is	terminated	gracefully.

Figure	12-32:	A	small	amount	of	data	is	being	transferred	between	these	hosts	via	HTTP.

http://homealldaylong.com/76N1Lm.php?x4tk7t4jo6


If	you	look	through	the	rest	of	the	capture	file,	you’ll	see	that	the	same
sequence	 repeats	 between	 these	 hosts,	with	 varying	 amounts	 of	 data	 being
transferred	each	time.	Use	the	filter	http.request.method == "POST"	to	see
three	different	connections	with	a	similar	URL	structure	(Figure	12-33).

Figure	12-33:	The	URL	structure	shows	different	data	being	passed	to	the	same	page.

The	76N1Lm.php	portion	(the	web	page)	remains	the	same,	but	the	rest
of	the	content	(the	parameter	and	data	being	passed	to	the	page)	varies.	The
repeating	 communication	 sequence	 combined	 with	 the	 structure	 of	 the
requests	is	consistent	with	command	and	control	(C2)	behavior	for	malware
and	the	signature	that	generated	the	alert.	It’s	therefore	likely	that	the	local
system	 is	 infected	 with	 CryptoWall,	 as	 the	 signature	 suggests.	 You	 can
further	verify	this	by	examining	a	similar	sample	on	the	popular	CryptoWall
Tracker	 research	 page:	 https://www.cryptowalltracker.org/cryptowall-
4.html#networktraffic.

NOTE

Deciphering	the	data	being	communicated	between	the	friendly	and	hostile
system	during	the	C2	sequence	would	be	a	little	complex	for	this	book.	But	if
you’re	interested,	you	can	read	more	about	that	process	here:
https://www.cryptowalltracker.org/communication-protocol.html.

Now	 that	 you’ve	 verified	 that	 malware-based	 C2	 communication	 is
taking	place,	it’s	a	good	idea	to	remediate	the	issue	and	address	the	infected
machine.	This	 is	especially	 important	when	malware	such	as	CryptoLocker
is	 involved,	because	 it	 attempts	 to	encrypt	 the	user’s	data	and	provides	 the
decryption	key	only	if	that	user	pays	a	hefty	ransom—thus,	the	term	ransom-
ware	for	such	malware.	The	steps	to	remediate	the	problem	are	beyond	the
scope	of	this	book,	but	in	a	real-world	scenario,	those	would	be	the	security
analyst’s	next	actions.

A	common	follow-up	question	is	how	the	friendly	machine	got	infected
in	the	first	place.	If	this	can	be	determined,	you	might	find	other	devices	that
have	been	infected	with	other	malware	in	a	similar	way,	or	you	may	be	able
to	develop	protection	or	detection	mechanisms	to	prevent	future	infection.

https://www.cryptowalltracker.org/cryptowall-4.html#networktraffic
https://www.cryptowalltracker.org/communication-protocol.html


The	 alert	 packets	 only	 showed	 the	 active	 C2	 sequence	 after	 the
infection.	 In	 networks	 performing	 security	 monitoring	 and	 continuous
packet	capture,	many	network	sensors	are	configured	to	store	packet	data	for
a	 few	 extra	 hours	 or	 days	 for	 forensic	 investigations.	 After	 all,	 not	 every
organization	 is	 equipped	 to	 respond	 to	 alerts	 the	 second	 they	 happen.
Temporary	storage	of	packets	allows	us	to	look	at	the	packet	data	from	the
friendly	 host	 just	 before	 it	 started	 the	C2	 sequence	we	 saw	 earlier.	Those
packets	are	included	in	the	file	ek_to_cryptowall4.pcapng.

A	cursory	scroll	through	this	packet	capture	tells	us	we	have	a	lot	more
packets	to	look	through,	but	they	are	all	HTTP.	Since	we	know	how	HTTP
works	already,	let’s	cut	to	the	chase	and	limit	the	visible	packets	to	only	the
requests	 by	 using	 the	 display	 filter	 http.request.	 This	 shows	 11	 HTTP
requests	originating	from	the	friendly	host	(Figure	12-34).

Figure	12-34:	There	are	11	HTTP	requests	from	the	friendly	host.

The	 first	 request	 is	 from	 the	 friendly	 host	 192.168.122.145	 to	 an
unknown	external	host	113.20.11.49.	An	examination	of	the	HTTP	portion
of	 this	 packet	 (Figure	 12-35)	 tells	 us	 that	 the	 user	 requested	 the	 page
http://www.sydneygroup.com.au/index.php/services/	➊	 and	 was	 referred	 from	 a
Bing	search	for	sydneygroup.com.au	➋.	So	far,	this	looks	normal.

Next,	the	friendly	host	makes	four	requests	to	another	unknown	external
host	 at	 45.32.238.202	 in	 packets	 35,	 39,	 123,	 and	 130.	 As	 you’ve	 seen	 in
earlier	 examples,	 it’s	 common	 for	 a	 browser	 to	 retrieve	 content	 from
additional	hosts	when	viewing	a	web	page	that	stores	embedded	content	or
advertisements	 on	 third-party	 servers.	 This	 by	 itself	 is	 not	 worrisome,
although	 the	 domain	 in	 these	 requests	 looks	 somewhat	 random	 and
suspicious.

http://www.sydneygroup.com.au/index.php/services/
http://sydneygroup.com.au


Figure	12-35:	An	HTTP	request	to	an	unknown	external	host

Things	 get	 interesting	 in	 the	 GET	 request	 at	 packet	 39.	 Following	 the
TCP	stream	of	this	exchange	(Figure	12-36),	you’ll	notice	that	a	file	named
bXJkeHFlYXhmaA	is	requested	➊.	The	name	of	this	file	is	a	little	odd,	and	it
doesn’t	include	a	file	extension	either.

Figure	12-36:	An	oddly	named	Flash	file	is	downloaded.



Upon	closer	inspection,	we	see	that	the	web	server	identifies	the	content
of	 this	 file	 as	 x-shockwave-flash	 ➋.	 Flash	 is	 a	 popular	 plugin	 used	 for
streaming	media	within	 a	 browser.	 It’s	 not	 abnormal	 to	 see	 Flash	 content
downloaded	 by	 a	 device,	 but	 it’s	 worth	 noting	 that	 Flash	 is	 notorious	 for
having	software	vulnerabilities,	and	it	often	goes	unpatched.	The	Flash	file	is
downloaded	successfully	following	the	request.

After	 the	 Flash	 file	 is	 downloaded,	 there	 is	 a	 request	 for	 another
similarly	named	file	 in	packet	130.	Following	this	TCP	stream	(Figure	12-
37),	 you	 see	 a	 request	 for	 a	 file	named	 enVjZ2dtcnpz	➊.	The	 file	 type	 isn’t
identified	here	with	an	extension	or	by	the	server.	The	request	is	followed	by
the	client’s	downloading	a	358,400-byte	chunk	of	unreadable	data	➋.

Figure	12-37:	Another	oddly	named	file	is	downloaded,	but	no	file	type	is	identified.

Less	 than	 20	 seconds	 after	 that	 file	 is	 downloaded,	 you	 should	 see
something	 familiar	 in	 the	 list	 of	 HTTP	 requests	 from	 Figure	 12-34.
Beginning	 with	 packet	 441,	 the	 friendly	 host	 starts	 making	 HTTP	 POST
requests	to	two	different	servers	using	the	same	C2	pattern	observed	earlier.
It’s	likely	we’ve	identified	the	source	of	the	infection.	The	two	files	that	were
downloaded	were	 responsible.	The	 first	 file	 from	 the	 request	 in	 packet	 39
delivered	a	Flash	exploit,	and	the	second	file	from	the	request	in	packet	130



delivered	the	malware.

NOTE

You	can	use	malware	analysis	techniques	to	decode	and	analyze	the	files
contained	in	the	packet	capture.	If	you’re	interested	in	learning	more	about
reverse	engineering	malware,	I	recommend	Practical	Malware	Analysis
(2012)	by	Michael	Sikorski	and	Andrew	Honig,	another	No	Starch	Press	book
and	a	personal	favorite	of	mine.

This	scenario	represents	one	of	the	most	common	infection	techniques.
A	 user	 was	 browsing	 the	 internet	 and	 stumbled	 onto	 a	 site	 that	 had	 been
infected	 with	 malicious	 redirection	 code	 from	 an	 exploit	 kit.	 These	 kits
infect	legitimate	servers	and	are	designed	to	fingerprint	clients	to	determine
their	vulnerabilities.	The	infected	page	is	known	as	the	kit’s	landing	page,	and
its	purpose	is	to	redirect	the	client	to	another	site	containing	an	exploit	the
kit	has	determined	will	be	effective	against	the	system.

The	packets	 you’ve	 just	 seen	 are	 from	 the	Angler	 exploit	 kit,	which	 is
perhaps	the	most	frequently	observed	kit	of	2015	and	2016.	When	the	user
reached	a	site	that	had	been	infected	by	Angler,	the	kit	determined	the	user
would	 be	 vulnerable	 to	 a	 specific	 Flash	 vulnerability.	 The	 Flash	 file	 was
delivered,	 the	 system	 was	 exploited,	 and	 a	 secondary	 payload	 of	 the
CryptoWall	malware	was	downloaded	and	installed	on	the	host.	This	entire
sequence	is	depicted	in	Figure	12-38.



Figure	12-38:	The	exploit	kit	infection	sequence

Final	Thoughts
Entire	books	could	be	written	on	breaking	down	packet	captures	in	security-
related	scenarios,	analyzing	common	attacks,	and	responding	to	IDS	alerts.
In	 this	 chapter,	we’ve	 examined	 some	 common	 scanning	 and	 enumeration
techniques,	 a	 common	MITM	 attack,	 and	 a	 couple	 of	 examples	 of	 how	 a
system	might	be	exploited	and	what	might	happen	as	a	result.



13
WIRELESS	PACKET	ANALYSIS

The	 world	 of	 wireless	 networking	 is	 a	 bit	 different
from	 that	 of	 traditional	 wired	 networking.	 Although
we	 are	 still	 dealing	 with	 common	 communication
protocols	such	as	TCP	and	IP,	the	game	changes	a	bit
when	moving	 to	 the	 lowest	 levels	 of	 the	OSI	model.
Here,	the	data	 link	layer	is	of	special	importance	due	to	the	nature	of
wireless	networking	and	the	physical	layer.	Instead	of	simple	wired	protocols
such	 as	 Ethernet,	 which	 haven’t	 changed	 much	 over	 time,	 we	 have	 to
consider	 the	 nuances	 of	 wireless	 protocols	 such	 as	 802.11,	 which	 have
evolved	pretty	quickly.	This	puts	new	restrictions	on	the	data	we	access	and
how	we	capture	it.

Given	these	extra	considerations,	 it	should	come	as	no	surprise	that	an
entire	 chapter	 of	 this	 book	 is	 dedicated	 to	 packet	 capture	 and	 analysis	 on
wireless	 networks.	 In	 this	 chapter,	 we	 will	 discuss	 exactly	 why	 wireless
networks	are	unique	when	it	comes	to	packet	analysis	and	how	to	overcome
any	challenges.	Of	course,	we	will	be	doing	this	by	looking	at	actual	practical
examples	of	wireless	network	captures.



Physical	Considerations
The	 first	 thing	 to	consider	about	capturing	and	analyzing	data	 transmitted
across	 a	wireless	 network	 is	 the	 physical	 transmission	medium.	Until	 now,
we	haven’t	considered	the	physical	layer	because	we’ve	been	communicating
over	physical	cabling.	Now	we’re	communicating	through	invisible	airwaves,
with	packets	flying	right	by	us.

Sniffing	One	Channel	at	a	Time

A	 consideration	 distinct	 to	 capturing	 traffic	 from	 a	 wireless	 local	 area
network	(WLAN)	is	that	the	wireless	spectrum	is	a	shared	medium.	Unlike
wired	networks,	where	each	client	has	its	own	network	cable	connected	to	a
switch,	 the	 wireless	 communication	 medium	 is	 the	 airspace	 clients	 share,
which	 is	 limited	 in	size.	A	single	WLAN	will	occupy	only	a	portion	of	 the
802.11	 spectrum.	 This	 allows	 multiple	 systems	 to	 operate	 in	 the	 same
physical	area	on	different	portions	of	the	spectrum.

NOTE

Wireless	networking	is	based	on	the	802.11	standard,	developed	by	the
Institute	of	Electrical	and	Electronics	Engineers	(IEEE).	Throughout	this
chapter,	the	terms	wireless	network	and	WLAN	refer	to	networks	that
adhere	to	the	802.11	standard.	The	most	popular	versions	of	this	standard	are
802.11a,	b,	g,	and	n.	Each	offers	a	unique	set	of	features	and	characteristics,
with	newer	standards	such	as	n	offering	faster	speed.	They	all	still	use	the	same
spectrum.

This	separation	of	space	is	made	possible	by	dividing	the	spectrum	into
operation	 channels.	 A	 channel	 is	 simply	 a	 portion	 of	 the	 802.11	 wireless
spectrum.	In	the	United	States,	11	channels	are	available	(more	are	allowed
in	 some	 other	 countries).	 This	 is	 relevant	 because,	 just	 as	 a	 WLAN	 can
operate	 on	 only	 one	 channel	 at	 a	 time,	 we	 can	 sniff	 packets	 on	 only	 one
channel	 at	 a	 time,	 as	 illustrated	 in	 Figure	 13-1.	 Therefore,	 if	 you	 are
troubleshooting	a	WLAN	operating	on	channel	6,	you	must	configure	your
system	to	capture	traffic	seen	on	channel	6.



Figure	13-1:	Sniffing	wirelessly	can	be	tedious,	since	it	can	be	done	on	only	one	channel	at	a
time.

Traditional	 wireless	 sniffing	 can	 only	 be	 done	 one	 channel	 at	 a	 time,
with	 an	 exception:	 certain	 wireless	 scanning	 applications	 use	 a	 technique
called	 channel	 hopping	 to	 change	 channels	 rapidly	 in	 order	 to	 collect	 data.
One	 of	 the	 most	 popular	 tools	 of	 this	 type,	 Kismet
(http://www.kismetwireless.net/),	 can	 hop	 up	 to	 10	 channels	 per	 second,	 a
capability	that	makes	it	very	effective	at	sniffing	multiple	channels	at	once.

Wireless	Signal	Interference

With	wireless	communications,	we	sometimes	can’t	rely	on	the	integrity	of
the	 data	 being	 transmitted	 over	 the	 air.	 It’s	 possible	 that	 something	 will
interfere	with	the	signal.	Wireless	networks	include	some	features	to	handle
interference,	 but	 those	 features	 don’t	 always	 work.	 Therefore,	 when
capturing	packets	over	 a	wireless	network,	you	must	pay	close	 attention	 to
your	 environment	 to	 ensure	 that	 there	 are	 no	 significant	 sources	 of
interference,	such	as	big	reflective	surfaces,	 large	rigid	objects,	microwaves,
2.4	 GHz	 phones,	 thick	 walls,	 or	 high-density	 surfaces.	 These	 can	 cause
packet	loss,	duplicated	packets,	and	malformed	packets.

Interference	between	channels	is	also	a	concern.	Although	you	can	sniff
only	 one	 channel	 at	 a	 time,	 this	 comes	 with	 a	 small	 caveat:	 several

http://www.kismetwireless.net/


transmission	channels	are	available	in	the	wireless	networking	spectrum,	but
because	 space	 is	 limited,	 there	 is	 a	 slight	 overlap	 between	 channels,	 as
illustrated	 in	 Figure	 13-2.	 This	 means	 that	 if	 there	 is	 traffic	 present	 on
channel	4	and	channel	5,	and	you	are	sniffing	on	one	of	these	channels,	you
will	likely	capture	packets	from	the	other	channel.	Typically,	networks	that
coexist	in	the	same	area	are	designed	to	use	nonoverlapping	channels	of	1,	6,
and	11,	so	you	probably	won’t	encounter	this	problem.	But	just	in	case,	you
should	understand	why	it	happens.

Figure	13-2:	There	is	overlap	between	channels	due	to	limited	spectrum	space.

Detecting	and	Analyzing	Signal	Interference

Troubleshooting	 wireless	 signal	 interference	 isn’t	 something	 that	 can	 be
done	by	looking	at	packets	in	Wireshark.	If	you	are	going	to	make	a	habit	or
a	career	out	of	 troubleshooting	WLANs,	you	will	 surely	need	to	check	 for
signal	 interference	 regularly.	 This	 task	 is	 done	 with	 a	 spectrum	 analyzer,	 a
tool	that	displays	data	or	interference	across	the	spectrum.

Commercial	spectrum	analyzers	can	cost	upward	of	thousands	of	dollars,
but	 there	 is	a	great	 solution	 for	common	everyday	use.	MetaGeek	makes	a
USB	hardware	device,	the	Wi-Spy,	that	monitors	the	entire	802.11	spectrum
for	signals.	When	paired	with	MetaGeek’s	inSSIDer	or	Chanalyzer	software,
this	hardware	outputs	the	spectrum	graphically	to	aid	in	the	troubleshooting
process.	Sample	output	from	Chanalyzer	is	shown	in	Figure	13-3.



Figure	13-3:	This	Chanalyzer	output	shows	four	signals	equally	spaced	along	the	Wi-Fi	spectrum.

Wireless	Card	Modes
Before	 we	 start	 sniffing	 wireless	 packets,	 we	 need	 to	 look	 at	 the	 different
modes	in	which	a	wireless	card	can	operate	as	it	pertains	to	packet	capture.

Four	wireless	NIC	modes	are	available:

Managed	mode			This	mode	is	used	when	your	wireless	client	connects
directly	 to	 a	 wireless	 access	 point	 (WAP).	 In	 these	 cases,	 the	 driver
associated	 with	 the	 wireless	 NIC	 relies	 on	 the	 WAP	 to	 manage	 the
entire	communication	process.
Ad	hoc	mode	 	 	This	mode	 is	used	when	you	have	a	wireless	network
setup	in	which	devices	connect	directly	to	each	other.	In	this	mode,	two
wireless	 clients	 that	 want	 to	 communicate	 with	 each	 other	 share	 the
responsibilities	that	a	WAP	would	normally	handle.
Master	mode	 	 	 Some	 higher-end	 wireless	NICs	 also	 support	 master
mode.	This	mode	allows	the	wireless	NIC	to	work	in	conjunction	with
specialized	 driver	 software	 in	 order	 to	 allow	 the	 computer	 to	 act	 as	 a
WAP	for	other	devices.
Monitor	mode	 	 	This	 is	 the	most	 important	mode	 for	 our	 purposes.



Monitor	 mode	 is	 used	 when	 you	 want	 your	 wireless	 client	 to	 stop
transmitting	 and	 receiving	 data	 and	 instead	 only	 listen	 to	 the	 packets
flying	through	the	air.	For	Wireshark	to	capture	wireless	packets,	your
wireless	 NIC	 and	 accompanying	 driver	 must	 support	 monitor	 mode
(also	known	as	RFMON	mode).
Most	users	use	wireless	cards	in	only	managed	mode	or	ad	hoc	mode.	A

graphical	representation	of	the	way	each	mode	operates	 is	shown	in	Figure
13-4.



Figure	13-4:	The	different	wireless	card	modes

NOTE

I’m	often	asked	which	wireless	card	I	recommend	for	wireless	packet	analysis.	I
use	and	highly	recommend	products	from	ALFA	network.	Their	products	are
regarded	as	some	of	the	best	on	the	market	for	ensuring	you	are	capturing
every	possible	packet,	and	they’re	cost-effective	and	portable.	ALFA’s	products
are	available	through	most	online	computer	hardware	retailers.

Sniffing	Wirelessly	in	Windows
Even	 if	 you	 have	 a	 wireless	 NIC	 that	 supports	 monitor	 mode,	 most
Windows-based	 wireless	NIC	 drivers	 won’t	 allow	 you	 to	 change	 into	 this
mode.	This	means	that	you’ll	only	be	able	to	capture	packets	to	and	from	the
wireless	interface	on	the	device	you’re	using	to	connect	to	the	network.	To
capture	packets	between	all	devices	on	a	channel,	you’ll	need	extra	hardware.

Configuring	AirPcap

AirPcap	 from	Riverbed	Technologies	 (http://www.riverbed.com/)	 is	 designed
to	overcome	the	limitations	that	Windows	places	on	wireless	packet	analysis.
AirPcap	 is	 a	 small	 USB	 device	 that	 resembles	 a	 flash	 drive,	 as	 shown	 in
Figure	 13-5.	 It	 is	 designed	 to	 capture	 wireless	 traffic	 from	 one	 or	 more
specified	 channels.	 AirPcap	 uses	 the	 WinPcap	 driver	 and	 a	 special	 client
configuration	utility.

http://www.riverbed.com/


Figure	13-5:	The	AirPcap	device	is	very	compact,	making	it	easy	to	tote	along	with	a	laptop.

The	AirPcap	configuration	program	(shown	in	Figure	13-6)	is	simple	to
use,	with	only	a	few	configurable	options:

Interface	 	 	 You	 can	 select	 the	 device	 you	 are	 using	 for	 your	 capture
here.	 Some	 advanced	 analysis	 scenarios	may	 require	 you	 to	 use	more
than	one	AirPcap	device	to	sniff	simultaneously	on	multiple	channels.
Blink	 Led	 	 	 Clicking	 this	 button	 will	 make	 the	 LED	 lights	 on	 the
AirPcap	 device	 blink.	 This	 is	 primarily	 used	 to	 identify	 the	 specific
adapter	you	are	using	if	you	have	multiple	AirPcap	devices.
Channel	 	 	 In	 this	 field,	 you	 select	 the	 channel	 you	 want	 AirPcap	 to
listen	on.



Figure	13-6:	The	AirPcap	configuration	program

Extension	 Channel	 	 	 Here	 you	 can	 select	 an	 extension	 channel,	 a
feature	of	802.11n	adapters	allowing	for	the	creation	of	wider	channels.
Include	802.11	FCS	in	Frames			By	default,	some	systems	strip	the	last
four	 checksum	bits	 from	wireless	 packets.	This	 checksum,	 known	 as	 a
frame	 check	 sequence	 (FCS),	 is	 used	 to	 ensure	 that	 packets	 have	 not
been	corrupted	during	 transmission.	Unless	you	have	a	 specific	 reason
to	do	otherwise,	check	this	box	to	include	the	FCS	checksums.
Capture	 Type	 	 	 The	 three	 options	 here	 are	 802.11	 Only,	 802.11	 +
Radio,	and	802.11	+	PPI.	The	802.11	Only	option	includes	the	standard
802.11	 packet	 header	 on	 all	 captured	 packets.	 The	 802.11	 +	 Radio
option	 includes	 this	 header	 and	 prepends	 it	 with	 a	 radiotap	 header,
which	 contains	 additional	 information	 about	 the	 packet,	 such	 as	 data
rate,	 frequency,	 signal	 level,	 and	noise	 level.	The	802.11	+	PPI	option
adds	 the	 Per-Packet	 Information	 Header,	 which	 contains	 additional
information	about	802.11n	packets.
FCS	Filter	 	 	Even	 if	 you	uncheck	 the	 Include	802.11	FCS	 in	Frames
box,	 this	 option	 lets	 you	 filter	 out	 packets	 that	 FCS	 determines	 are
corrupted.	Use	the	Valid	Frames	option	to	show	only	those	packets	that



FCS	thinks	can	be	received	successfully.
WEP	 Configuration	 	 	 This	 area	 (accessible	 on	 the	 Keys	 tab	 of	 the
AirPcap	Control	Panel)	 allows	 you	 to	 enter	WEP	decryption	keys	 for
the	networks	you	will	be	sniffing.	To	be	able	to	interpret	data	encrypted
by	WEP,	you	will	need	 to	enter	 the	correct	WEP	keys	 into	 this	 field.
WEP	keys	are	discussed	 in	“Successful	WEP	Authentication”	on	page
309.

Capturing	Traffic	with	AirPcap

Once	you	have	AirPcap	installed	and	configured,	the	capture	process	should
be	familiar	to	you.	Just	start	up	Wireshark	and	select	the	AirPcap	interface	to
start	collecting	packets	from	it	(Figure	13-7).

Figure	13-7:	Selecting	the	AirPcap	interface	to	capture	packets

Remember	 that	 you	 will	 be	 capturing	 packets	 from	 whatever	 channel
you	selected	in	the	AirPcap	configuration	utility.	If	you	don’t	see	the	packets
you’re	 looking	 for,	 it’s	 probably	 because	 you’re	 looking	 on	 the	 wrong
channel.	Change	the	channel	by	stopping	the	active	capture,	selecting	a	new
channel	in	the	AirPcap	configuration	utility,	and	restarting	the	capture.	You
can’t	actively	capture	packets	while	you	attempt	to	change	the	channel.

If	 you	 need	 to	 verify	 what	 channel	 you’re	 capturing	 from	 within
Wireshark,	 an	 easy	 way	 is	 to	 view	 wireless	 capture	 statistics.	 Do	 this	 by
clicking	Wireless	▶	WLAN	Traffic	from	the	main	drop-down	menu.	The
resulting	 window	 will	 show	 you	 the	 devices	 that	 were	 observed	 and



information	about	 them,	 including	 the	802.11	channel,	 as	 shown	 in	Figure
13-8.

Figure	13-8:	The	Wireless	LAN	Statistics	window	indicates	this	data	was	captured	by	listening	to
channel	11.

Sniffing	Wirelessly	in	Linux
Sniffing	 in	 Linux	 is	 simply	 a	 matter	 of	 enabling	 monitor	 mode	 on	 the
wireless	 NIC	 and	 firing	 up	 Wireshark.	 Unfortunately,	 the	 procedure	 for
enabling	monitor	mode	differs	with	each	model	of	wireless	NIC,	so	I	can’t
offer	 definitive	 advice	 for	 doing	 this.	 In	 fact,	 some	 wireless	 NICs	 don’t
require	you	to	enable	monitor	mode.	Your	best	bet	is	to	do	a	quick	Google
search	for	your	NIC	model	to	determine	whether	you	need	to	enable	it	and,
if	so,	how.

One	 of	 the	 more	 common	 ways	 to	 enable	 monitor	 mode	 in	 Linux	 is
through	 its	 built-in	 wireless	 extensions.	 You	 can	 access	 these	 wireless
extensions	with	the	iwconfig	command.	If	you	type	iwconfig	from	the	console,
you	should	see	results	like	this:

   $ iwconfig
➊ Eth0   no wireless extensions
   Lo0    no wireless extensions
➋ Eth1  IEEE 802.11g        ESSID: "Tesla Wireless Network"
          Mode: Managed Frequency: 2.462 GHz Access Point: 00:02:2D:8B:70:2E
          Bit Rate: 54 Mb/s Tx-Power-20 dBm Sensitivity=8/0
          Retry Limit: 7 RTS thr: off Fragment thr: off
          Power Management: off
          Link Quality=75/100 Signal level=-71 dBm Noise level=-86 dBm
          Rx invalid nwid: 0 Rx invalid crypt: 0 Rx invalid frag: 0
          Tx excessive retries: 0 Invalid misc: 0 Missed beacon: 2

The	output	from	the	iwconfig	command	shows	that	the	Eth1	interface	can



be	 configured	 wirelessly.	 This	 is	 apparent	 because	 it	 shows	 data	 for	 the
802.11g	protocol	➋,	whereas	the	interfaces	Eth0	and	Lo0	return	the	phrase	no
wireless extensions	➊.

Along	with	all	the	wireless	information	this	command	provides,	such	as
the	wireless	extended	service	set	ID	(ESSID)	and	frequency,	notice	that	the
second	line	under	Eth1	shows	that	the	mode	is	currently	set	to	managed.	This
is	what	we	want	to	change.

To	change	the	Eth1	interface	to	monitor	mode,	you	must	be	logged	in	as
the	root	user,	either	directly	or	via	the	switch	user	(su)	command,	as	shown
here:

$ su
Password: <enter root password here>

Once	 you’re	 root,	 you	 can	 type	 commands	 to	 configure	 the	 wireless
interface	options.	To	configure	Eth1	to	operate	in	monitor	mode,	enter	this:

# iwconfig eth1 mode monitor

Once	the	NIC	is	in	monitor	mode,	running	the	iwconfig	command	again
should	reflect	your	changes.	Now	ensure	that	the	Eth1	interface	is	operational
by	entering	the	following:

# iwconfig eth1 up

We’ll	 also	 use	 the	 iwconfig	 command	 to	 change	 the	 channel	 we	 are
listening	 on.	 Change	 the	 channel	 of	 the	 Eth1	 interface	 to	 channel	 3	 by
entering	this:

# iwconfig eth1 channel 3

NOTE

You	can	change	channels	on	the	fly	as	you	are	capturing	packets,	so	don’t
hesitate	to	do	so	at	will.	The	iwconfig	command	can	also	be	scripted	to	make	the
process	easier.

When	 you	 have	 completed	 these	 configurations,	 start	Wireshark	 and
begin	your	packet	capture.



802.11	Packet	Structure

80211beacon.pcapng

The	primary	difference	between	wireless	and	wired	packets	is	the	addition	of
the	802.11	header.	This	layer	2	header	contains	extra	information	about	the
packet	and	the	medium	by	which	it	is	transmitted.	There	are	three	types	of
802.11	packets:

Management	 	 	 These	 packets	 are	 used	 to	 establish	 connectivity
between	 hosts	 at	 layer	 2.	 Some	 important	 subtypes	 of	 management
packets	include	authentication,	association,	and	beacon	packets.
Control	 	 	Control	packets	allow	 for	delivery	of	management	and	data
packets,	 and	 they	 are	 concerned	 with	 congestion	 management.
Common	subtypes	include	request-to-send	and	clear-to-send	packets.
Data	 	 	 These	 packets	 contain	 actual	 data	 and	 are	 the	 only	 types	 of
packets	 that	 can	be	 forwarded	 from	 the	wireless	 network	 to	 the	wired
network.

The	 type	 and	 subtype	 of	 a	 wireless	 packet	 determine	 its	 structure,	 so
there	 are	 a	 large	 number	 of	 possible	 structures.	 We’ll	 examine	 one	 such
structure	 by	 looking	 at	 a	 single	 packet	 in	 the	 file	80211beacon.pcapng.	This
file	contains	an	example	of	a	management	packet	called	a	beacon,	as	shown	in
Figure	13-9.

A	beacon	is	one	of	the	most	informative	wireless	packets	you	can	find.	It
is	sent	as	a	broadcast	packet	from	a	WAP	across	a	wireless	channel	to	notify
any	 listening	 wireless	 clients	 that	 the	WAP	 is	 available	 and	 to	 define	 the
parameters	 that	must	be	 set	 in	order	 to	 connect	 to	 it.	 In	our	 example	 file,
you	can	see	that	this	packet	is	defined	as	a	beacon	in	the	Type/Subtype	field
in	the	802.11	header	➊.

A	 great	 deal	 of	 additional	 information	 is	 found	 in	 the	 802.11
management	frame	header,	including	the	following:

Timestamp			The	time	the	packet	was	transmitted
Beacon	 Interval	 	 	 The	 interval	 at	 which	 the	 beacon	 packet	 is
retransmitted
Capabilities	Information			Information	about	the	hardware	capabilities
of	the	WAP



Figure	13-9:	This	is	an	802.11	beacon	packet.

SSID	 parameter	 set	 	 	 The	 SSID	 (network	 name)	 broadcast	 by	 the
WAP
Supported	Rates			The	data	transfer	rates	supported	by	the	WAP
DS	Parameter	set			The	channel	on	which	the	WAP	is	broadcasting

The	 header	 also	 includes	 the	 source	 and	 destination	 addresses	 and
vendor-specific	information.

Based	 on	 this,	 we	 can	 determine	 quite	 a	 few	 things	 about	 the	WAP
transmitting	the	beacon	in	the	example	file.	It	is	apparent	that	it	is	a	D-Link
device	➋	using	the	802.11b	standard	(B)	➌	on	channel	11	➍.



Although	the	exact	contents	and	purpose	of	802.11	management	packets
will	change,	the	general	structure	remains	similar	to	this	example.

Adding	Wireless-Specific	Columns	to	the	Packet	List
Pane
In	 previous	 chapters,	we’ve	 leveraged	Wireshark’s	 flexible	 interface	 to	 add
situationally	 appropriate	 columns.	 Before	 we	 proceed	 with	 any	 additional
wireless	analysis,	it	will	be	helpful	to	add	the	following	three	columns	to	the
Packet	List	pane.

•					The	Channel	column,	to	show	the	channel	on	which	the	packet	was
collected

•					The	Signal	Strength	column,	to	show	the	signal	strength	of	a	captured
packet	in	dBm

•					The	Data	Rate	column,	to	show	the	throughput	rate	of	a	captured
packet

These	 indicators	 can	 be	 of	 great	 help	 when	 troubleshooting	 wireless
connections.	For	instance,	even	if	your	wireless	client	software	says	you	have
excellent	 signal	 strength,	doing	a	 capture	and	checking	 these	columns	may
show	you	a	number	that	does	not	support	this	claim.

To	add	these	columns	to	the	Packet	List	pane,	follow	these	steps:

1.	 Choose	Edit	▶	Preferences.

2.	 Navigate	to	the	Columns	section	and	click	+.

3.	 Type	Channel	in	the	Title	field,	select	Custom	in	the	Type	drop-
down	list,	and	use	the	filter	wlan_radio.channel	in	the	Field	Name
box.

4.	 Repeat	this	process	for	the	Signal	Strength	and	Data	Rate	columns,
titling	them	appropriately	and	selecting	wlan_radio.signal_dbm	and
wlan_radio.data_rate,	respectively,	in	the	Field	Name	drop-down	list.
Figure	13-10	shows	what	the	Preferences	window	should	look	like	after
you	have	added	all	three	columns.



Figure	13-10:	Adding	the	IEEE	wireless-specific	columns	in	the	Packet	List	pane

5.	 Click	OK	to	save	your	changes.

Wireless-Specific	Filters
We	 discussed	 the	 benefits	 of	 capture	 and	 display	 filters	 in	 Chapter	 4.
Filtering	traffic	in	a	wired	infrastructure	is	a	lot	easier	since	each	device	has
its	own	dedicated	cable.	In	a	wireless	network,	however,	all	traffic	generated
by	wireless	clients	coexists	on	shared	channels,	meaning	that	a	capture	of	any
one	 channel	 may	 contain	 traffic	 from	 dozens	 of	 clients.	 This	 section	 is
devoted	 to	 some	 packet	 filters	 that	 can	 be	 used	 to	 help	 you	 find	 specific
traffic.

Filtering	Traffic	for	a	Specific	BSS	ID

Each	WAP	in	a	network	has	a	unique	identifying	name	called	its	basic	service
set	 identifier	 (BSS	 ID).	 This	 name	 is	 sent	 in	 every	 wireless	 management
packet	and	data	packet	that	the	access	point	transmits.

Once	you	know	the	name	of	the	BSS	ID	you	want	to	examine,	all	you
really	 need	 to	 do	 is	 find	 a	 packet	 that	 has	 been	 sent	 from	 that	 particular



WAP.	Wireshark	 shows	 the	 transmitting	WAP	 in	 the	 Info	 column	 of	 the
Packet	List	pane,	so	finding	this	information	is	typically	easy.

Once	you	have	a	packet	from	the	WAP	of	interest,	find	its	BSS	ID	field
in	the	802.11	header.	This	is	the	address	on	which	you	will	base	your	filter.
After	you	have	found	the	BSS	ID	MAC	address,	you	can	use	this	filter:

wlan.bssid == 00:11:22:33:44:55

And	you	will	see	only	the	traffic	flowing	through	the	specified	WAP.

Filtering	Specific	Wireless	Packet	Types

Earlier	 in	 this	 chapter,	we	discussed	 the	different	 types	of	wireless	 packets
you	might	see	on	a	network.	You’ll	often	need	to	filter	based	on	these	types
and	subtypes.	This	can	be	done	with	the	filters	wlan.fc.type	for	specific	types
and	wc.fc.type_subtype	for	specific	type	or	subtype	combinations.	For	instance,
to	 filter	 for	 a	NULL	data	packet	 (a	Type	2	Subtype	4	packet	 in	hex),	 you
could	 use	 the	 filter	 wlan.fc.type_subtype == 0x24.	Table	 13-1	 provides	 a	 quick
reference	to	some	common	filters	you	might	need	when	filtering	on	802.11
packet	types	and	subtypes.

Table	13-1:	Wireless	Types/Subtypes	and	Associated	Filter	Syntax

Frame	type/subtype Filter	syntax

Management	frame wlan.fc.type == 0

Control	frame wlan.fc.type == 1

Data	frame wlan.fc.type == 2

Association	request wlan.fc.type_subtype == 0x00

Association	response wlan.fc.type_subtype == 0x01

Reassociation	request wlan.fc.type_subtype == 0x02

Reassociation	response wlan.fc.type_subtype == 0x03

Probe	request wlan.fc.type_subtype == 0x04

Probe	response wlan.fc.type_subtype == 0x05

Beacon wlan.fc.type_subtype == 0x08



Disassociate wlan.fc.type_subtype == 0x0A

Authentication wlan.fc.type_subtype == 0x0B

Deauthentication wlan.fc.type_subtype == 0x0C

Action	frame wlan.fc.type_subtype == 0x0D

Block	ACK	requests wlan.fc.type_subtype == 0x18

Block	ACK wlan.fc.type_subtype == 0x19

Power	save	poll wlan.fc.type_subtype == 0x1A

Request	to	send wlan.fc.type_subtype == 0x1B

Clear	to	send wlan.fc.type_subtype == 0x1C

ACK wlan.fc.type_subtype == 0x1D

Contention	free	period	end wlan.fc.type_subtype == 0x1E

NULL	data wlan.fc.type_subtype == 0x24

QoS	data wlan.fc.type_subtype == 0x28

Null	QoS	data wlan.fc.type_subtype == 0x2C

Filtering	a	Specific	Frequency

If	 you	 are	 examining	 a	 compilation	 of	 traffic	 that	 includes	 packets	 from
multiple	 channels,	 it	 can	 be	 very	 useful	 to	 filter	 based	 on	 each	 individual
channel.	 For	 instance,	 if	 you	 are	 expecting	 to	 have	 traffic	 present	 on	 only
channels	1	and	6,	you	can	input	a	filter	to	show	all	channel	11	traffic.	If	you
find	 any	 traffic,	 then	 you’ll	 know	 that	 something	 is	 wrong—perhaps	 a
misconfiguration	or	a	rogue	device.	To	filter	on	a	specific	channel,	use	this
filter	syntax:

wlan_radio.channel == 11

This	will	 show	 all	 traffic	 on	 channel	 11.	 You	 can	 replace	 the	 11	 value
with	the	channel	you	wish	to	filter.	There	are	hundreds	of	additional	useful
filters	that	you	can	use	for	wireless	network	traffic.	You	can	view	additional
wireless	capture	filters	on	the	Wireshark	wiki	at	http://wiki.wireshark.org/.

http://wiki.wireshark.org/


Saving	a	Wireless	Profile
It’s	 a	 fair	 bit	 of	 work	 to	 go	 through	 all	 the	 trouble	 of	 setting	 up	 specific
columns	 and	 saving	 custom	 filters	 for	 wireless	 packet	 analysis.	 Instead	 of
reconfiguring	and	removing	columns	and	filters	all	the	time,	you	can	create
and	save	a	custom	profile	to	quickly	switch	between	configurations	for	wired
and	wireless	analysis.

To	save	a	custom	profile,	first	configure	wireless	columns	and	filters	to
your	liking.	Then	right-click	the	active	profile	listing	at	the	bottom	right	of
the	screen	and	click	New.	Name	the	profile	Wireless	and	click	OK.

Wireless	Security
The	biggest	concern	when	deploying	and	administering	a	wireless	network	is
the	security	of	 the	data	 transmitted	across	 it.	With	data	 flying	 through	the
air,	free	for	the	taking	by	anyone	who	knows	how,	it’s	crucial	that	the	data	be
encrypted.	Otherwise,	anyone	with	Wireshark	and	an	AirPcap	can	see	it.

NOTE

When	another	layer	of	encryption,	such	as	SSL	or	SSH,	is	used,	traffic	will
still	be	encrypted	at	that	layer,	and	the	user’s	communication	will	still	be
unreadable	by	a	person	with	a	packet	sniffer.

The	 original	 preferred	 method	 for	 securing	 data	 transmitted	 over
wireless	 networks	 was	 in	 accordance	 with	 the	 Wired	 Equivalent	 Privacy
(WEP)	 standard.	 WEP	 was	 mildly	 successful	 for	 years	 until	 several
weaknesses	were	uncovered	in	its	encryption	key	management.	To	improve
security,	 new	 standards	 were	 created.	 These	 include	 the	Wi-Fi	 Protected
Access	 (WPA)	 and	 the	more	 secure	WPA2	 standards.	Although	WPA	and
WPA2	are	fallible,	they	are	considered	more	secure	than	WEP.

In	 this	 section,	we’ll	 look	 at	 some	WEP	 and	WPA	 traffic,	 along	with
examples	of	failed	authentication	attempts.

Successful	WEP	Authentication



3e80211_WEPauth.pcapng

The	 file	 3e80211_WEPauth.pcapng	 contains	 an	 example	 of	 a	 successful
connection	 to	 a	 WEP-enabled	 wireless	 network.	 The	 security	 on	 this
network	 is	 set	up	using	a	WEP	key.	This	 is	a	key	you	must	provide	to	the
WAP	 (the	wireless	 access	point)	 in	order	 to	 authenticate	 to	 it	 and	decrypt
data	 sent	 from	 it.	 You	 can	 think	 of	 this	WEP	 key	 as	 a	 wireless	 network
password.

As	shown	in	Figure	13-11,	the	capture	file	begins	with	a	challenge	from
the	 WAP	 (28:c6:8e:ab:96:16)	 to	 the	 wireless	 client	 (ac:cf:5c:78:6c:9c)	 in
packet	 3	 ➊.	 The	 purpose	 of	 this	 challenge	 is	 to	 determine	 whether	 the
wireless	 client	 has	 the	 correct	 WEP	 key.	 You	 can	 see	 this	 challenge	 by
expanding	the	802.11	header	and	its	tagged	parameters.

The	wireless	 client	 responds,	 as	 shown	 in	Figure	13-12,	by	decrypting
the	 challenge	 text	➊	 with	 the	WEP	 key	 and	 returning	 it	 to	 the	WAP	 in
packet	 4.	 The	 WEP	 key	 was	 provided	 by	 the	 user	 when	 attempting	 to
connect	to	the	wireless	network.



Figure	13-11:	The	WAP	issues	challenge	text	to	the	wireless	client.



Figure	13-12:	The	wireless	client	sends	the	unencrypted	challenge	text	back	to	the	WAP.

The	WAP	responds	to	the	wireless	client	in	packet	5,	as	shown	in	Figure
13-13.	The	response	contains	a	notification	that	 the	authentication	process
was	successful	➊.

Figure	13-13:	The	WAP	alerts	the	client	that	authentication	was	successful.



Finally,	 after	 successful	 authentication,	 the	 client	 can	 transmit	 an
association	 request,	 receive	 an	 acknowledgment,	 and	 complete	 the
connection	process,	as	shown	in	Figure	13-14.

Figure	13-14:	The	authentication	process	is	followed	by	a	simple	two-packet	association	request
and	response.

Failed	WEP	Authentication

3e80211_WEPauthfail.pcapng.

In	our	next	example,	a	user	enters	a	WEP	key	to	connect	to	a	WAP.	After
several	 seconds,	 the	 wireless	 client	 utility	 reports	 that	 it	 was	 unable	 to
connect	 to	 the	wireless	 network	 but	 fails	 to	 tell	 why.	The	 resulting	 file	 is
3e80211_WEPauthfail.pcapng.

As	 with	 the	 successful	 attempt,	 this	 communication	 begins	 with	 the
WAP’s	sending	challenge	text	to	the	wireless	client	in	packet	3.	In	packet	4,
the	wireless	 client	 sends	 its	 response	 using	 the	WEP	 key	 provided	 by	 the
user.

At	 this	 point,	 we	 would	 expect	 to	 see	 a	 notification	 that	 the
authentication	was	successful,	but	we	see	something	different	in	packet	5,	as
shown	in	Figure	13-15	➊.

Figure	13-15:	This	message	tells	us	the	authentication	was	unsuccessful.

This	message	tells	us	that	the	wireless	client’s	response	to	the	challenge



text	was	incorrect	and	suggests	that	the	WEP	key	the	client	used	to	decrypt
the	 text	must	have	 also	been	 incorrect.	As	 a	 result,	 the	 connection	process
has	failed.	It	must	be	reattempted	with	the	proper	WEP	key.

Successful	WPA	Authentication

3e80211_WPAauth.pcapng

WPA	uses	a	very	different	authentication	mechanism	than	WEP,	but	it	still
relies	 on	 the	 user	 to	 enter	 a	 key	 into	 the	wireless	 client	 to	 connect	 to	 the
network.	An	example	of	a	successful	WPA	authentication	is	found	in	the	file
3e80211_WPAauth.pcapng.

The	first	packet	in	this	file	is	a	beacon	broadcast	from	the	WAP.	Expand
the	802.11	header	of	this	packet,	look	under	tagged	parameters,	and	expand
the	Vendor	 Specific	 heading,	 as	 shown	 in	Figure	 13-16.	You	 should	 see	 a
section	devoted	to	the	WPA	attributes	of	the	WAP	➊.	This	lets	us	know	the
version	and	implementation	of	WPA	that	a	WAP	supports,	if	any.



Figure	13-16:	This	beacon	lets	us	know	that	the	WAP	supports	WPA	authentication.

Once	 the	 beacon	 is	 received,	 the	 wireless	 client	 (ac:cf:5c:78:6c:9c)
broadcasts	 a	probe	 request	 in	packet	2	 that	 is	 received	by	 the	WAP	 (28:c6
:8e:ab:96:16),	 which	 responds	 in	 packet	 3.	 After	 that,	 authentication	 and
association	requests	and	responses	are	generated	between	the	wireless	client
and	WAP	 in	 packets	 4	 through	 7.	These	 are	 similar	 to	 the	 authentication
and	 association	 packets	 we	 saw	 in	 the	 WEP	 example	 earlier,	 but	 no
challenge	and	response	occur	here.	That	exchange	happens	next.

Things	 really	 start	 to	 pick	 up	 in	 packet	 8.	 This	 is	 where	 the	 WPA
handshake	begins,	continuing	through	packet	11.	During	the	handshake,	the
WPA	challenge	and	response	take	place,	as	shown	in	Figure	13-17.



Figure	13-17:	These	packets	are	a	part	of	the	WPA	handshake.

There	are	two	challenges	and	responses.	Each	can	be	matched	with	the
other	 based	 on	 the	Replay	Counter	 field	 under	 the	 802.1x	 Authentication
header,	as	shown	in	Figure	13-18.	Notice	that	the	Replay	Counter	value	for
the	 first	 two	 handshake	 packets	 is	 1	➊	 and	 for	 the	 second	 two	 handshake
packets	is	2	➋.



Figure	13-18:	The	Replay	Counter	field	helps	us	pair	challenges	and	responses.

After	the	WPA	handshake	is	completed	and	authentication	is	successful,



data	begins	transferring	between	the	wireless	client	and	the	WAP.

NOTE

This	example	is	from	a	WAP	using	WPA	with	TKIP	encryption.	TKIP	is	just
one	method	for	encrypting	data	on	WLANs.	There	are	many	other	types	of
encryption,	and	different	access	points	will	support	different	techniques.	A
WAP	using	a	different	encryption	method	or	WPA	version	will	likely	exhibit
different	characteristics	at	the	packet	level.	You	can	read	the	RFC	document
relating	to	the	technology	being	used	to	better	decipher	what	the	connection
sequence	should	look	like.

Failed	WPA	Authentication

3e80211_WPAauthfail.pcapng

As	with	WEP,	we’ll	look	at	what	happens	when	a	user	enters	a	WPA	key	and
the	wireless	client	utility	reports	that	it	was	unable	to	connect	to	the	wireless
network	 without	 indicating	 the	 problem.	 The	 resulting	 file	 is
3e80211_WPAauthfail.pcapng.

The	 capture	 file	 begins	 in	 a	 manner	 identical	 to	 the	 file	 showing	 a
successful	 WPA	 authentication	 and	 includes	 probe,	 authentication,	 and
association	 requests.	 The	WPA	 handshake	 begins	 in	 packet	 8,	 but	 in	 this
case,	 there	 are	 eight	 handshake	 packets	 instead	 of	 the	 four	 we	 saw	 in	 the
successful	authentication	attempt.

Packets	 8	 and	 9	 represent	 the	 first	 two	 packets	 seen	 in	 the	 WPA
handshake.	In	this	case,	however,	the	challenge	text	the	client	sends	back	to
the	WAP	is	incorrect.	As	a	result,	the	sequence	is	repeated	in	packets	10	and
11,	12	and	13,	and	14	and	15,	as	shown	in	Figure	13-19.	Each	request	and
response	can	be	paired	using	the	Replay	Counter	value.

Figure	13-19:	The	additional	EAPoL	(Extensible	Authentication	Protocol	over	LAN)	packets	here



indicate	the	failed	WPA	authentication.

Once	 the	handshake	process	has	been	attempted	and	 failed	 four	 times,
the	communication	is	aborted.	As	shown	in	Figure	13-20,	the	wireless	client
deauthenticates	from	the	WAP	in	packet	16	➊.

Figure	13-20:	After	failing	the	WPA	handshake,	the	client	deauthenticates.

Final	Thoughts
Although	wireless	networks	are	still	considered	somewhat	insecure,	unless	a
plethora	of	additional	security	mechanisms	are	piled	on,	that	concern	hasn’t
slowed	 their	 deployment	 in	 various	 organizational	 environments.	 As
communication	 without	 wires	 is	 the	 new	 norm,	 it’s	 crucial	 to	 be	 able	 to
capture	 and	 analyze	 data	 on	wireless	 networks,	 as	well	 as	wired	 ones.	The
skills	 and	 concepts	 taught	 in	 this	 chapter	 are	 by	 no	means	 exhaustive,	 but
they	 should	 provide	 a	 jump-start	 for	 understanding	 the	 intricacies	 of
troubleshooting	wireless	networks	with	packet	analysis.



A
FURTHER	READING

Although	the	tool	you’ve	primarily	used	in	this	book	is
Wireshark,	a	great	many	additional	tools	will	come	in
handy	 when	 you’re	 performing	 packet	 analysis—
whether	 for	 general	 troubleshooting,	 slow	 networks,
security	 issues,	 or	 wireless	 networks.	 This	 appendix
lists	 some	 useful	 packet	 analysis	 tools	 and	 other
learning	resources.

Packet	Analysis	Tools

Let’s	take	a	look	at	a	few	of	the	tools	I’ve	found	useful	for	packet	analysis.

CloudShark

CloudShark	 (developed	 by	 QA	 Café)	 is	 my	 favorite	 tool	 for	 storing,
indexing,	 and	 sorting	 packet	 captures.	 CloudShark	 is	 a	 commercial	 web
application	 that	 serves	 as	 a	 packet	 capture	 repository.	 It	 allows	 you	 to	 tag
packet	 captures	 for	 quick	 reference	 and	 to	 add	 comments	 in	 the	 captures



themselves.	 It	 even	 provides	 some	 analysis	 features	 similar	 to	 those	 in
Wireshark	(Figure	A-1).

Figure	A-1:	A	sample	capture	file	viewed	with	CloudShark

If	you	or	your	organization	maintains	a	large	library	of	packet	captures,
or	you’re	like	me	and	are	always	losing	your	files,	then	CloudShark	can	help.
I	 have	 CloudShark	 deployed	 in	 my	 network,	 and	 I	 used	 it	 to	 store	 and
organize	 all	 the	 packet	 captures	 for	 this	 book.	 You	 can	 learn	more	 about
CloudShark	at	https://www.cloudshark.org/.

WireEdit

You	may	need	 to	create	 specifically	 formatted	packets	 to	 support	 intrusion
detection	 system	 testing,	 penetration	 testing,	 or	 network	 software
development.	One	option	is	to	re-create	the	scenario	that	will	generate	the
packets	 you	 need	 in	 a	 lab,	 but	 doing	 so	 can	 be	 time-consuming.	 Another
technique	 is	 to	 find	 a	 similar	 packet	 and	 manually	 edit	 it	 to	 match	 your
needs.	My	favorite	tool	for	this	task	is	WireEdit,	a	graphical	tool	that	allows
you	 to	 edit	 specific	 values	 in	 a	 packet.	The	 very	 intuitive	 user	 interface	 is
similar	to	Wireshark’s.	WireEdit	will	even	recalculate	packet	checksums	so
that	your	packets	don’t	appear	invalid	when	opened	in	Wireshark.	You	can
learn	more	about	WireEdit	at	https://wireedit.com/.

https://www.cloudshark.org/
https://wireedit.com/


Cain	&	Abel

Discussed	in	Chapter	2,	Cain	&	Abel	is	one	of	the	better	Windows	tools	for
ARP	cache	poisoning.	Cain	&	Abel	 is	 actually	 a	 very	 robust	 suite	of	 tools,
and	 you	will	 surely	 be	 able	 to	 find	 other	 uses	 for	 it	 as	well.	 It	 is	 available
from	http://www.oxid.it/cain.html.

Scapy

Scapy	 is	 a	 very	 powerful	 Python	 library	 that	 you	 can	 use	 to	 create	 and
manipulate	packets	based	on	command	 line	 scripts	within	 its	 environment.
Simply	 put,	 Scapy	 is	 the	 most	 powerful	 and	 flexible	 packet-crafting
application	available.	You	can	read	more	about	Scapy,	download	it,	and	view
sample	Scapy	scripts	at	http://www.secdev.org/projects/scapy/.

TraceWrangler

Packet	captures	contain	a	lot	of	information	about	your	network.	If	you	need
to	share	a	packet	capture	from	your	network	with	a	vendor	or	colleague,	you
might	not	want	 them	to	have	that	 information.	TraceWrangler	helps	solve
this	 problem	 by	 providing	 the	 ability	 to	 sanitize	 packet	 captures	 by
anonymizing	 the	 different	 types	 of	 addresses	 present.	 It	 has	 a	 few	 other
features,	 such	as	 the	ability	 to	edit	and	merge	capture	 files,	but	 I	primarily
use	 it	 for	 sanitization.	 Download	 TraceWrangler	 at
https://www.tracewrangler.com/.

Tcpreplay

Whenever	I	have	a	set	of	packets	that	I	need	to	retransmit	over	the	wire	to
see	 how	 a	 device	 reacts	 to	 them,	 I	 use	 Tcpreplay.	 This	 tool	 is	 designed
specifically	to	retransmit	the	packets	contained	within	a	packet	capture	file.
Download	it	from	http://tcpreplay.synfin.net/.

NetworkMiner

NetworkMiner	is	a	tool	primarily	used	for	network	forensics,	but	I’ve	found
it	useful	 in	a	variety	of	other	 situations	as	well.	Although	 it	can	be	used	 to
capture	 packets,	 its	 real	 strength	 is	 how	 it	 parses	 packet	 capture	 files.

http://www.oxid.it/cain.html
http://www.secdev.org/projects/scapy/
https://www.tracewrangler.com/
http://tcpreplay.synfin.net/


NetworkMiner	will	 take	a	PCAP	file	and	break	 it	down	 into	 the	operating
systems	 detected	 and	 the	 sessions	 between	 hosts.	 It	 even	 allows	 you	 to
extract	 transferred	 files	 directly	 from	 the	 capture	 (Figure	 A-2).	 All	 these
features	are	available	in	the	free	version;	the	commercial	version	offers	a	few
other	 helpful	 features,	 such	 as	 the	 ability	 to	 perform	 OS	 fingerprinting,
compare	findings	against	a	whitelist,	and	increase	the	speed	of	packet	capture
processing.	 NetworkMiner	 is	 free	 to	 download	 from
http://www.netresec.com/?page=NetworkMiner.

Figure	A-2:	Using	NetworkMiner	to	examine	files	in	a	packet	capture

CapTipper

One	thing	I	hope	you’ve	learned	in	this	book	is	that	finding	the	answers	you
need	often	involves	looking	at	the	same	data	in	a	different	way.	CapTipper	is
a	 tool	 designed	 for	 security	 practitioners	 who	 analyze	 malicious	 HTTP

http://www.netresec.com/?page=NetworkMiner


traffic	(see	Figure	A-3).	It	provides	a	richly	featured	shell	environment	that
allows	 the	 user	 to	 interactively	 explore	 individual	 conversations	 to	 find
redirections,	file	objects,	and	malicious	content.	It	also	provides	a	few	handy
features	 for	 interacting	with	 the	 data	 you	uncover,	 including	 the	 ability	 to
extract	gzipped	data	and	submit	file	hashes	to	VirusTotal.	You	can	download
CapTipper	at	https://www.github.com/omriher/CapTipper/.

Figure	A-3:	Analyzing	an	HTTP-based	malware	delivery	with	CapTipper

ngrep

If	 you	 are	 familiar	 with	 Linux,	 you’ve	 no	 doubt	 used	 grep	 to	 search	 data.
ngrep	 is	 similar	 and	allows	you	 to	perform	very	 specific	 searches	of	packet
capture	data.	 I	mostly	use	ngrep	when	capture	 and	display	 filters	won’t	do
the	 job	 or	 get	 too	 wildly	 complex.	 You	 can	 read	 more	 about	 ngrep	 at
http://ngrep.sourceforge.net/.

libpcap

If	you	plan	to	do	any	advanced	packet	parsing	or	create	applications	that	deal
with	packets,	you’ll	become	very	familiar	with	libpcap.	Simply	put,	libpcap	is
a	portable	C/C++	 library	 for	network	 traffic	 capture.	Wireshark,	 tcpdump,
and	 most	 other	 packet	 analysis	 applications	 rely	 on	 the	 libpcap	 library	 at
some	level.	You	can	read	more	about	libpcap	at	http://www.tcpdump.org/.

Npcap

https://www.github.com/omriher/CapTipper/
http://ngrep.sourceforge.net/
http://www.tcpdump.org/


Npcap	 is	 the	 Nmap	 Project’s	 packet-sniffing	 library	 for	Windows	 that	 is
based	on	WinPcap/libpcap.	 It	 is	 reported	 to	deliver	 performance	 increases
when	 capturing	 packets,	 and	 it	 provides	 extra	 security	 features	 related	 to
restricting	 packet	 capture	 to	 administrators	 and	 leveraging	Windows	User
Account	control.	Npcap	can	be	installed	as	an	alternative	to	WinPCap	and
used	 with	 Wireshark.	 You	 can	 learn	 more	 about	 it	 here:
https://www.github.com/nmap/npcap/.

hping

hping	 is	one	of	 the	more	versatile	 tools	 to	have	 in	your	arsenal.	hping	 is	 a
command	line	packet-crafting,	-editing,	and	-transmission	tool.	It	supports	a
variety	of	protocols	and	is	very	quick	and	intuitive	to	use.	You	can	download
hping	from	http://www.hping.org/.

Python

Python	 isn’t	 a	 tool	 but	 rather	 a	 scripting	 language	 that	 is	 well	 worth
mentioning.	 As	 you	 become	 proficient	 in	 packet	 analysis,	 you’ll	 encounter
cases	in	which	no	automated	tool	exists	to	meet	your	needs.	In	those	cases,
Python	 is	 the	 language	 of	 choice	 for	making	 tools	 that	 can	 do	 interesting
things	with	packets.	You’ll	also	need	to	know	a	little	Python	to	interact	with
the	 Scapy	 library.	My	 favorite	 online	 resource	 for	 learning	 Python	 is	 the
popular	 Learn	 Python	 the	 Hard	 Way	 series,	 which	 can	 be	 found	 here:
https://www.learnpythonthehardway.org/.

Packet	Analysis	Resources
From	 Wireshark’s	 home	 page	 to	 courses	 and	 blogs,	 many	 resources	 for
packet	analysis	are	available.	I’ll	list	a	few	of	my	favorites	here.

Wireshark’s	Home	Page

The	foremost	resource	for	everything	related	to	Wireshark	is	its	home	page,
http://www.wireshark.org/.	 It	 has	 links	 to	 software	 documentation,	 a	 very
helpful	wiki	 that	contains	sample	capture	files,	and	sign-up	information	for
the	Wireshark	mailing	 list.	You	can	also	browse	to	https://ask.wireshark.org/

https://www.github.com/nmap/npcap/
http://www.hping.org/
https://www.learnpythonthehardway.org/
http://www.wireshark.org/
https://ask.wireshark.org/


to	ask	questions	about	things	you’re	seeing	in	Wireshark	or	specific	features.
This	community	is	active	and	very	helpful.

Practical	Packet	Analysis	Online	Course

If	 you	 like	 this	 book,	 you	 might	 also	 like	 the	 online	 training	 course	 that
complements	 it.	 In	 the	 Practical	 Packet	 Analysis	 course,	 you’ll	 be	 able	 to
follow	 along	with	 videos	 as	 I	 go	 through	 all	 the	 captures	 in	 this	 book	 and
several	others.	I	also	provide	capture	labs	where	you	can	test	your	skills	and	a
discussion	forum	where	you	can	learn	from	other	students	as	you	progress.
This	 course	 launches	 in	mid-2017.	You	 can	 learn	more	 about	my	 training
offerings	 at	http://www.chrissanders.org/training/	 and	 sign	up	 for	my	mailing
list	 to	 get	 notified	 about	 training	 opportunities	 here:
http://www.chrissanders.org/list/.

SANS’s	Security	Intrusion	Detection	In-Depth	Course

SANS	 SEC503:	 Intrusion	 Detection	 In-Depth	 focuses	 on	 the	 security
aspects	 of	 packet	 analysis.	 Even	 if	 you	 aren’t	 focused	 on	 security,	 the	 first
two	days	of	the	course	provide	a	fantastic	introduction	to	packet	analysis	and
tcpdump.	It	is	offered	at	live	events	several	times	a	year	at	locations	around
the	world.

You	can	read	more	about	SEC503	and	other	SANS	Institute	courses	at
http://www.sans.org/.

Chris	Sanders’s	Blog

I	occasionally	write	articles	related	to	packet	analysis	and	post	them	on	my
blog	at	http://www.chrissanders.org/.	My	blog	also	serves	as	a	portal	that	links
to	 other	 articles	 and	 books	 I	 have	 written	 and	 provides	 my	 contact
information.	You’ll	 also	 find	 links	 to	packet	 captures	 included	 in	 this	book
and	others.

Brad	Duncan’s	Malware	Traffic	Analysis

My	 favorite	 resource	 for	 security-related	packet	 captures	 is	Brad	Duncan’s
Malware	Traffic	Analysis	(MTA)	site.	Brad	posts	packet	captures	containing

http://www.chrissanders.org/training/
http://www.chrissanders.org/list/
http://www.sans.org/
http://www.chrissanders.org/


real	 infection	chains	multiple	 times	per	week.	These	captures	are	complete
with	the	associated	malware	binaries	and	a	description	of	what	is	happening.
If	you	want	to	gain	experience	dissecting	malware	infections	and	learn	about
current	 malware	 techniques,	 start	 by	 downloading	 some	 of	 these	 captures
and	trying	to	make	sense	of	them.	You	can	visit	MTA	at	http://www.malware-
traffic-analysis.net/	 or	 follow	 Brad	 on	 Twitter	 at	 @malware_traffic	 to	 be
alerted	when	he	posts	updates.

IANA’s	Website

The	 Internet	 Assigned	 Numbers	 Authority	 (IANA),	 available	 at
http://www.iana.org/,	 oversees	 the	 allocation	 of	 IP	 addresses	 and	 protocol
number	 assignments	 for	 North	 America.	 Its	 website	 offers	 some	 valuable
reference	 tools,	 such	 as	 the	 ability	 to	 look	 up	 port	 numbers,	 view
information	related	to	top-level	domain	names,	and	browse	companion	sites
to	find	and	view	RFCs.

W.	Richard	Stevens’s	TCP/IP	Illustrated	Series

Considered	 the	 TCP/IP	 bible	 by	 most,	 W.	 Richard	 Stevens’s	 TCP/IP
Illustrated	series	(Addison-Wesley,	1994–1996)	is	a	staple	on	the	bookshelves
of	most	who	live	at	the	packet	level.	These	are	my	favorite	TCP/IP	books,
and	I	consulted	these	volumes	quite	a	bit	while	writing	this	book.	A	second
edition	of	Volume	1,	coauthored	with	Dr.	Keven	R.	Fall,	was	published	 in
2012.

The	TCP/IP	Guide

The	TCP/IP	Guide	by	Charles	Kozierok	(No	Starch	Press,	2005)	 is	another
reference	 resource	 for	TCP/IP	protocol	 information.	Weighing	 in	 at	 over
1,600	 pages,	 it’s	 very	 detailed	 and	 contains	 many	 great	 diagrams	 for	 the
visual	learner.

http://www.malware-traffic-analysis.net/
http://www.iana.org/


B
NAVIGATING	PACKETS

In	 this	 appendix,	we’ll	 examine	ways	 that	packets	 can
be	 represented.	 We’ll	 look	 at	 fully	 interpreted	 and
hexadecimal	representations	of	packets,	as	well	as	how
to	 read	 and	 reference	 packet	 values	 using	 a	 packet
diagram.

Because	 you’ll	 find	 a	wealth	 of	 software	 that	 can	 interpret	 packet	 data
for	 you,	 you	 could	 perform	 packet	 sniffing	 and	 analysis	 without
understanding	 the	 information	contained	 in	 this	 appendix.	But,	 if	 you	 take
the	 time	 to	 learn	 about	 packet	 data	 and	how	 it’s	 structured,	 you’ll	 be	 in	 a
much	better	position	 to	understand	what	 tools	 like	Wireshark	are	 showing
you.	 The	 less	 abstraction	 between	 you	 and	 the	 data	 you’re	 analyzing,	 the
better.

Packet	Representation

There	 are	many	ways	 a	 packet	 can	 be	 represented	 for	 interpretation.	Raw
packet	data	can	be	represented	as	binary,	a	combination	of	1s	and	0s	in	base
2,	like	this:

0110000001010011010111000000101011000001000000000001000000000000001000110000010



0110000001010011010111000000101011000001000000000001000000000000001000110000010
110101011011100000000000000000000000000000000000000000010000001000000000001011
0110100000000000001000000110000000000000000000000010000000100000000010000000010

Binary	 numbers	 represent	 digital	 information	 at	 the	 lowest	 level
possible,	with	 a	 1	 representing	 the	presence	of	 an	 electrical	 signal	 and	 a	 0
representing	 the	 absence	of	 a	 signal.	Each	digit	 is	 a	bit,	 and	eight	bits	 is	 a
byte.	However,	binary	data	 is	difficult	for	humans	to	read	and	interpret,	so
we	usually	convert	binary	data	to	hexadecimal,	a	combination	of	letters	and
numbers	in	base	16.	The	same	packet	in	hexadecimal	looks	like	this:

4500 0034 40f2 4000 8006 535c ac10 1080
4a7d 5f68 0646 0050 7c23 5ab7 0000 0000
8002 2000 0b30 0000 0204 05b4 0103 0302
0101 0402

Hexadecimal	(also	referred	to	as	hex)	is	a	numbering	system	that	uses	the
numbers	0	through	9	and	letters	A	through	F	to	represent	values.	It	is	one	of
the	most	common	ways	that	packets	are	represented	because	it’s	concise	and
can	easily	be	converted	to	the	even	more	fundamental	binary	interpretation.
In	 hex,	 two	 characters	 represent	 a	 byte,	 which	 contains	 eight	 bits.	 Each
character	within	a	byte	is	a	nibble	(4	bits),	with	the	leftmost	value	being	the
higher-order	nibble	and	the	rightmost	value	being	the	lower-order	nibble.	Using
the	 example	 packet,	 this	 means	 that	 the	 first	 byte	 is	 45,	 the	 higher-order
nibble	is	4,	and	the	lower-order	nibble	is	5.

The	 position	 of	 bytes	 within	 a	 packet	 is	 represented	 using	 offset
notation,	starting	from	zero.	Therefore,	the	first	byte	in	the	packet	(45)	is	at
position	0x00,	 the	 second	byte	 (00)	 is	at	0x01,	and	 the	 third	byte	 (00)	 is	at
0x02,	and	so	on.	The	0x	part	is	saying	that	hex	notation	is	being	used.	When
referencing	 a	 position	 spanning	 more	 than	 one	 byte,	 the	 number	 of
additional	 bytes	 is	 indicated	 numerically	 after	 a	 colon.	 For	 example,	 to
reference	 the	 position	 of	 the	 first	 four	 bytes	 in	 the	 example	 packet	 (4500
0034),	 you	would	use	0x00:4.	This	 explanation	will	 be	 important	when	we
use	packet	diagrams	to	dissect	unknown	protocols	in	“Navigating	a	Mystery
Packet”	on	page	330.

NOTE

The	most	common	mistake	I	see	people	make	when	trying	to	dissect	packets	is
forgetting	to	start	counting	from	zero.	This	is	very	hard	to	get	used	to,	since



most	people	are	taught	to	start	counting	from	one.	I’ve	been	slicing	and	dicing
packets	for	years,	and	I	still	make	this	mistake.	The	best	advice	I	can	give	here
is	don’t	be	afraid	to	count	on	your	fingers.	You	might	feel	like	it	looks
dumb,	but	there’s	absolutely	no	shame	in	it,	especially	if	it	helps	you	arrive	at
the	correct	answer.

At	a	much	higher	level,	a	tool	like	Wireshark	can	represent	a	packet	in	a
fully	 interpreted	manner	 by	 using	 a	 protocol	 dissector,	which	we’ll	 discuss
next.	 The	 same	 packet	 we	 just	 looked	 at	 is	 shown	 in	 Figure	 B-1,	 fully
interpreted	by	Wireshark.

Figure	B-1:	A	packet	interpreted	by	Wireshark

Wireshark	shows	the	information	in	a	packet	with	labels	that	describe	it.
Packets	 don’t	 contain	 labels,	 but	 their	 data	 does	 map	 to	 a	 precise	 format
specified	by	the	protocol	standard.	Fully	interpreting	a	packet	means	reading
the	 data	 based	 on	 the	 protocol	 standard	 and	 dissecting	 it	 into	 labeled,
human-friendly	text.

Wireshark	 and	 similar	 tools	 are	 able	 to	 fully	 interpret	 packet	 data
because	 they	 have	 protocol	 dissectors	 built	 into	 them	 that	 define	 the
position,	length,	and	values	of	each	field	within	a	protocol.	For	example,	the
packet	 in	 Figure	 B-1	 is	 broken	 into	 sections	 based	 on	 the	 Transmission
Control	Protocol	 (TCP).	Within	TCP,	 there	are	 labeled	 fields	 and	values.
Source	Port	is	one	label,	and	1606	is	its	decimal	value.	This	makes	it	easy	to
find	 the	 information	 you’re	 looking	 for	 when	 performing	 analysis.
Whenever	this	option	is	available	to	you,	it’s	usually	the	most	efficient	way
to	get	the	job	done.



Wireshark	 has	 thousands	 of	 dissectors,	 but	 you	 might	 encounter
protocols	 that	Wireshark	doesn’t	 know	how	 to	 interpret.	This	 is	often	 the
case	 with	 vendor-specific	 protocols	 that	 aren’t	 widely	 used	 and	 custom
malware	 protocols.	 When	 this	 happens,	 you’ll	 be	 left	 with	 only	 partially
interpreted	 packets.	 This	 is	 why	Wireshark	 provides	 the	 raw	 hexadecimal
packet	data	at	the	bottom	of	the	screen	by	default	(see	Figure	B-1).

More	commonly,	command	line	programs	like	tcpdump	that	show	raw
hex	 don’t	 have	 nearly	 as	many	 dissectors.	This	 is	 especially	 true	 for	more
complex	 application-layer	 protocols,	 which	 are	 trickier	 to	 parse.	 Thus,
encountering	partially	interpreted	packets	is	the	norm	when	using	this	tool.
An	example	of	using	tcpdump	is	shown	in	Figure	B-2.

When	you	are	working	with	partially	interpreted	packets,	you’ll	have	to
rely	 on	 knowledge	 of	 packet	 structure	 at	 a	 more	 fundamental	 level.
Wireshark,	 tcpdump,	and	most	other	 tools	enable	 this	by	 showing	 the	 raw
packet	data	in	hex	format.

Figure	B-2:	Partially	interpreted	packets	from	tcpdump

Using	Packet	Diagrams
As	we	learned	in	Chapter	1,	a	packet	represents	data	that	is	formatted	based
on	the	rules	of	protocols.	Because	common	protocols	format	packet	data	in	a
specific	manner	 so	 that	 hardware	 and	 software	 can	 interpret	 this	 data,	 the
packets	 must	 follow	 explicit	 formatting	 rules.	 We	 can	 identify	 this
formatting	 and	use	 it	 to	 interpret	packet	data	by	using	packet	diagrams.	A
packet	diagram	is	a	graphical	representation	of	a	packet	that	allows	an	analyst
to	map	bytes	within	a	packet	 to	 fields	used	by	any	given	protocol.	Derived
from	the	protocol’s	RFC	specification	document,	it	shows	the	fields	present
within	the	protocol,	their	length,	and	their	order.

Let’s	take	another	look	at	the	example	packet	diagram	for	IPv4	we	saw
in	Chapter	7	(provided	here	for	your	convenience	as	Figure	B-3).



Figure	B-3:	A	packet	diagram	for	IPv4

In	this	diagram,	the	horizontal	axis	represents	individual	binary	bits	that
are	numbered	 from	0	 to	31.	The	bits	are	grouped	 into	8-bit	bytes	 that	are
numbered	from	0	to	3.	The	vertical	axis	also	is	labeled	according	to	bits	and
bytes,	 and	each	row	 is	divided	 into	32-bit	 (or	4-byte)	 sections.	We	use	 the
axes	 to	count	 field	positions	using	offset	notation	by	 first	 reading	 from	the
vertical	axis	to	determine	which	4-byte	section	the	field	resides	in,	and	then
counting	off	each	byte	in	the	section	using	the	horizontal	axis.	The	first	row
consists	of	the	first	four	bytes,	0	through	3,	which	are	labeled	accordingly	on
the	 horizontal	 axis.	 The	 second	 row	 consists	 of	 the	 next	 four	 bytes,	 4
through	7,	which	can	also	be	counted	off	using	the	horizontal	axis.	Here	we
start	with	byte	4,	which	is	byte	0	on	the	horizontal	axis,	then	byte	5,	which
corresponds	to	byte	1	on	the	horizontal	axis,	and	so	on.

For	example,	we	can	determine	that	for	IPv4,	byte	0x01	is	the	Type	of
Service	 field,	 since	 we	 start	 at	 offset	 0	 and	 then	 count	 to	 byte	 1.	 On	 the
vertical	axis,	the	first	four	bytes	are	in	the	first	row,	so	we	would	then	use	the
horizontal	axis	and	start	counting	from	0	to	byte	1.	As	another	example,	byte
0x08	 is	 the	Time	 to	Live	 field.	Using	 the	 vertical	 axis,	 we	 determine	 that
byte	8	is	in	the	third	row	down,	which	contains	bytes	8	through	11.	We	then
use	the	horizontal	axis	to	count	to	byte	8	starting	from	0.	Since	byte	8	is	the
first	in	the	section,	the	horizontal	axis	column	is	just	0,	which	is	the	Time	to
Live	field.

Some	fields,	such	as	the	Source	IP	field,	span	multiple	bytes,	as	we	see	in
0x12:4.	 Other	 fields	 are	 divided	 into	 nibbles.	 An	 example	 is	 0x00,	 which
contains	 the	 Version	 field	 in	 the	 higher-order	 nibble	 and	 the	 IP	 Header
Length	in	the	lower-order	nibble.	Byte	0x06	contains	even	more	granularity,



with	individual	bits	used	to	represent	specific	fields.	When	a	field	is	a	single
binary	 value,	 it	 is	 often	 referred	 to	 as	 a	 flag.	 Examples	 are	 the	 Reserved,
Don’t	Fragment,	and	More	Fragments	fields	in	the	IPv4	header.	A	flag	can
only	have	a	binary	value	of	1	(true)	or	0	(false),	so	the	flag	is	“set”	when	the
value	is	1.	The	exact	implication	of	a	flag	setting	will	vary	based	on	protocol
and	field.

Let’s	 look	 at	 another	 example	 in	 Figure	 B-4	 (you	may	 recognize	 this
diagram	from	Chapter	8).

Figure	B-4:	A	packet	diagram	for	the	TCP

This	 image	 shows	 the	 TCP	 header.	 Looking	 at	 this	 image,	 we	 can
answer	a	lot	of	questions	about	a	TCP	packet	without	knowing	exactly	what
TCP	 does.	 Consider	 an	 example	 TCP	 packet	 header	 represented	 in	 hex
here:

0646 0050 7c23 5ab7 0000 0000 8002 2000
0b30 0000 0204 05b4 0103 0302 0101 0402

Using	 the	 packet	 diagram,	 we	 can	 locate	 and	 interpret	 specific	 fields.
For	example,	we	can	determine	the	following:

•					The	Source	Port	number	is	at	0x00:2	and	has	a	hex	value	of	0646
(Decimal:	1606).

•					The	Destination	Port	number	is	at	0x02:2	and	has	a	hex	value	of	0050
(Decimal:	80).

•					The	header	length	is	in	the	Data	Offset	field	at	the	higher-order	nibble
of	0x12	and	has	a	hex	value	of	8.



Let’s	apply	this	knowledge	by	dissecting	a	mystery	packet.

Navigating	a	Mystery	Packet
In	Figure	B-2,	I	showed	you	a	packet	that	was	only	partially	interpreted.	You
can	 ascertain	 through	 the	 interpreted	 portion	 of	 the	 data	 that	 this	 is	 a
TCP/IP	packet	 transmitted	between	two	devices	on	the	same	network,	but
other	 than	 that,	 you	 don’t	 know	 much	 about	 the	 data	 being	 transmitted.
Here’s	the	complete	hex	output	of	the	packet:

4500 0034 8bfd 4000 8006 1068 c0a8 6e83
c0a8 6e8a 081a 01f6 41d2 eac6 e115 3ace
5018 fcc6 0032 0000 00d1 0000 0006 0103
0001 0001

A	quick	 count	 finds	 that	 there	 are	52	bytes	 in	 this	 packet.	The	packet
diagram	 for	 IP	 tells	 us	 that	 the	 normal	 size	 of	 the	 IP	 header	 is	 20	 bytes,
which	 is	 confirmed	by	 looking	 at	 the	 header	 size	 value	 in	 the	 lower-order
nibble	of	0x00.	The	diagram	 for	 the	TCP	header	 tells	us	 that	 it	 is	 also	20
bytes	 if	no	additional	options	are	present	 (there	aren’t	here,	but	we	discuss
TCP	options	in	more	depth	in	Chapter	8).	This	means	that	the	first	40	bytes
of	 this	 output	 are	 related	 to	 the	 TCP	 and	 IP	 data	 that	 has	 already	 been
interpreted.	This	leaves	the	remaining	12	bytes	uninterpreted.

00d1 0000 0006 0103 0001 0001

Without	 knowledge	 of	 how	 to	 navigate	 packets,	 this	 might	 leave	 you
stumped,	 but	 you	 now	 know	 how	 to	 apply	 a	 packet	 diagram	 to	 the
uninterpreted	bytes.	In	this	case,	the	interpreted	TCP	data	tells	us	that	the
destination	port	for	this	data	is	502.	Reviewing	the	ports	used	by	traffic	isn’t
a	foolproof	method	for	identifying	uninterpreted	bytes,	but	it’s	a	good	place
to	start.	A	quick	Google	search	reveals	that	port	502	is	most	commonly	used
for	 Modbus	 over	 TCP,	 which	 is	 a	 protocol	 used	 in	 Industrial	 Control
System	 (ICS)	 networks.	We	 can	 validate	 this	 is	 the	 case	 and	 navigate	 this
packet	 by	 comparing	 the	 hex	 output	 to	 the	 packet	 diagram	 for	 Modbus,
shown	in	Figure	B-5.



Figure	B-5:	Packet	diagram	for	Modbus	over	TCP

This	 packet	 diagram	 was	 created	 based	 on	 the	 information	 in	 the
Modbus	 implementation	 guide:
http://www.modbus.org/docs/Modbus_Messaging_Implementation_Guide_V1_0b.pdf
This	tells	us	that	there	should	be	a	7-byte	header	that	 includes	the	Length
field	at	0x04:2	(relative	to	the	start	of	the	header).	Counting	to	that	position,
we	arrive	at	 a	hex	value	of	0006	 (or	a	decimal	value	of	6),	 indicating	 there
should	be	6	bytes	 following	 that	 field,	which	 is	 exactly	 the	case.	 It	 appears
that	this	is	indeed	Modbus	over	TCP	data.

By	comparing	the	packet	diagram	to	the	entirety	of	the	hex	output,	the
following	information	is	derived:

•					The	Transaction	Identifier	is	at	0x00:2	and	has	a	hex	value	of	00d1.	This
field	is	used	to	pair	a	request	with	a	response.

•					The	Protocol	Identifier	is	at	0x02:2	and	has	a	hex	value	of	0000.	This
identifies	the	protocol	as	Modbus.

•					The	Length	is	at	0x04:2	and	has	a	hex	value	of	0006.	This	defines	the
length	of	the	packet	data.

•					The	Unit	Identifier	is	at	0x06	and	has	a	hex	value	of	01.	This	is	used	for
intrasystem	routing.

•					The	Function	Code	is	at	0x07	and	has	a	hex	value	of	03.	This	is	the
Read	Holding	Registers	function,	which	reads	a	data	value	from	a
system.

•					Based	on	the	function	code	value	of	3,	two	more	data	fields	are	expected.
The	Reference	Number	and	Word	Count	are	found	at	0x08:4,	and	each
has	a	hex	value	of	0001.

The	mystery	 packet	 can	 now	 be	 fully	 explained	 in	 the	 context	 of	 the

http://www.modbus.org/docs/Modbus_Messaging_Implementation_Guide_V1_0b.pdf


Modbus	 protocol.	 If	 you	 were	 troubleshooting	 the	 system	 responsible	 for
this	packet,	this	information	should	be	all	you	need	to	proceed	onward.	Even
if	you	never	encounter	Modbus,	this	is	an	example	of	how	you	can	approach
an	unknown	protocol	and	uninterpreted	packet	using	a	packet	diagram.

It’s	always	best	practice	to	be	aware	of	the	abstraction	between	yourself
and	 the	 data	 being	 analyzed.	 This	 helps	 you	 make	 sounder	 and	 more
knowledgeable	decisions	and	allows	you	to	work	with	packets	in	a	variety	of
situations.	I’ve	found	myself	in	many	scenarios	in	which	I’ve	only	been	able
to	 use	 command	 line–based	 tools	 such	 as	 tcpdump	 to	 analyze	 packets.
Because	most	of	 these	 tools	 lack	dissection	 for	many	 layer	7	protocols,	 the
ability	to	manually	dissect	specific	bytes	in	these	packets	has	been	crucial.

NOTE

A	colleague	once	had	to	help	perform	incident	response	in	a	highly	secure
environment.	He	was	cleared	to	review	the	data	he	needed	to	look	at,	but	not
to	access	the	specific	system	the	data	was	stored	on.	The	only	thing	they	could	do
in	the	amount	of	time	they	had	was	print	out	the	packets	from	specific
conversations.	Thanks	to	his	fundamental	knowledge	of	how	packets	are	built
and	of	how	to	navigate	them,	he	was	able	to	find	the	information	he	needed	in
the	printed	data.	Of	course,	the	process	was	slower	than	cold	molasses	running
down	a	frozen	branch.	This	is	an	extreme	scenario,	but	it’s	a	prime	example	of
why	universal	tool-agnostic	knowledge	is	important.

For	all	of	these	reasons,	it’s	helpful	to	spend	time	breaking	apart	packets
in	 order	 to	 gain	 experience	 viewing	 multiple	 interpretations.	 I	 do	 this
enough	 that	 I’ve	 printed	 out	 several	 common	 packet	 diagrams,	 had	 them
laminated,	and	keep	 them	beside	my	desk.	 I	also	maintain	a	digital	version
on	 my	 laptop	 and	 tablet	 for	 quick	 reference	 when	 traveling.	 For
convenience,	I’ve	included	several	common	packet	diagrams	in	the	ZIP	file
containing	 the	 packet	 captures	 that	 goes	 along	 with	 this	 book
(https://www.nostarch.com/packetanalysis3/).

Final	Thoughts
In	 this	 appendix,	 we	 learned	 how	 to	 interpret	 packet	 data	 in	 a	 variety	 of
formats	 and	 how	 to	 use	 packet	 diagrams	 to	 navigate	 uninterpreted	 packet

https://www.nostarch.com/packetanalysis3/


data.	 Given	 this	 fundamental	 knowledge,	 you	 should	 have	 no	 trouble
understanding	how	to	dissect	packets	regardless	of	the	tool	you	are	using	to
view	packet	data.
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Use	an	external	network	name	resolver	option	(Wireshark),	85
Use	captured	DNS	packet	data	for	address	resolution	option	(Wireshark),	85
User	Datagram	Protocol.	See	UDP

V
–V	argument	(command	line	tools),	109–110
–v	argument	(command	line	tools),	110
Variable	field	(ICMP	headers),	144
Version	field

IPv4	headers,	127
IPv6	headers,	135

visibility	window
defined,	19
on	switched	network,	21



W
WAN	(wide	area	network)	link,	222–223
WAPs	(wireless	access	points)

802.11	packet	structure,	304–305
basic	service	set	identifier,	307
filtering	traffic	for	BSS	ID,	307
WEP	authentication,	309–312
wireless	NIC	modes,	298
WPA	authentication,	312–314

–w	argument	(command	line	tools),	107–108
Warning	messages	(Wireshark),	100,	101
weather	service,	unresponsive,	205–210

analysis,	206–209
conclusions,	209–210
tapping	into	the	wire,	206

well-known	port	group	(system	port	group),	153
WEP	(Wired	Equivalent	Privacy)	authentication,	309–312
WEP	Configuration	option	(AirPcap),	301
WHOIS	query,	207
WHOIS	registry,	81,	82
wide	area	network	(WAN)	link,	222–223
Wi-Fi	Protected	Access.	See	WPA
Windows

installing	Wireshark,	39–41
sniffing	wirelessly,	300–302
TShark

capturing	and	saving	packets,	106–108
compared	to	tcpdump,	118
filters,	113–114
installing,	104
manipulating	output,	109–111
name	resolution,	111–112



summary	statistics,	115–118
time	display	formats,	114–115

WinDump,	105
Window	Size	field	(TCP	headers),	152
WinPcap	capture	driver,	39
Wired	Equivalent	Privacy	(WEP)	authentication,	309–312
WireEdit	tool,	318
wire	latency,	248–249
wireless	access	points.	See	WAPs
wireless	card	modes

Ad	hoc	mode,	298,	299
Managed	mode,	298,	299
Master	mode,	298,	299
Monitor	mode,	298,	299

Wireless	LAN	Statistics	window	(Wireshark),	302
wireless	local	area	networks	(WLANs),	296.	See	also	wireless	packet	analysis
wireless	packet	analysis

802.11	packet	structure,	304–305
adding	wireless-specific	columns	to	Packet	List	pane,	305–306
filters,	307–308
physical	considerations

signal	interference,	297–298
sniffing	channels,	296–297

saving	wireless	profile,	309
security,	309–315
sniffing	wirelessly

in	Linux,	303–304
in	Windows,	300–302

wireless	card	modes,	298–299
wireless	sniffing

in	Linux,	303–304
sniffing	channels,	296–297
in	Windows,	300–302



Wireshark,	2,	37
advanced	features,	77–101
big-endian	format,	146
configuration	files,	50
configuration	profiles,	50–52
conversations,	78–83,	260,	262
cost,	38
endpoints,	78–83
expert	information,	99–101
graphing,	95–99
Home	Page,	322
installing,	39–43

on	Linux	systems,	41–43
on	OS	X	systems,	43
on	Windows	systems,	39–41

main	window,	45–46
name	resolution,	84–88
operating	system	support,	39
Packet	Bytes	pane,	45,	46,	111
packet	capture,	44–45
packet	color	coding,	48–49
Packet	Details	pane,	45,	46,	238
packet	lengths,	93–94
Packet	List	pane,	45,	46,	239,	305–306
preferences,	46–47
program	support,	39
protocol	dissectors,	88–91
protocol	hierarchy	statistics,	83–84,	252,	253,	254
source	code	access,	39
stream	following,	91–93
supported	protocols,	38
user-friendliness,	38

Wi-Spy	spectrum	analyzer,	298
WLANs	(wireless	local	area	networks),	296.	See	also	wireless	packet	analysis



WPA	(Wi-Fi	Protected	Access),	309,	312–314

X
–x	argument	(command	line	tools),	110

Y
–Y	argument	(command	line	tools),	113
Your	IP	Address	field	(DHCP	packets),	165

Z
Z	(Reserved)	field	(DNS	packets),	174
–z	argument	(command	line	tools),	115,	118
zero	window	packet	(TCP),	242–245,	247







DON’T	JUST	STARE	AT	CAPTURED	PACKETS.
ANALYZE	THEM.

Download	the	capture	files	used	in	this	book	from
nostarch.com/packetanalysis3/

It’s	 easy	 to	 capture	 packets	 with	 Wireshark,	 the	 world’s	 most	 popular
network	 sniffer,	whether	off	 the	wire	or	 from	the	air.	But	how	do	you	use
those	packets	to	understand	what’s	happening	on	your	network?

Updated	to	cover	Wireshark	2.x,	the	third	edition	of	Practical	Packet	Analysis
will	teach	you	to	make	sense	of	your	packet	captures	so	that	you	can	better
troubleshoot	 network	 problems.	 You’ll	 find	 added	 coverage	 of	 IPv6	 and
SMTP,	 a	 new	 chapter	 on	 the	 powerful	 command	 line	 packet	 analyzers
tcpdump	and	TShark,	and	an	appendix	on	how	to	read	and	reference	packet
values	using	a	packet	map.

Practical	Packet	Analysis	will	show	you	how	to:

•	Monitor	your	network	in	real	time	and	tap	live	network	communications

•	Build	customized	capture	and	display	filters

•	Use	packet	analysis	to	troubleshoot	and	resolve	common	network
problems,	like	loss	of	connectivity,	DNS	issues,	and	slow	speeds

•	Explore	modern	exploits	and	malware	at	the	packet	level

•	Extract	files	sent	across	a	network	from	packet	captures

•	Graph	traffic	patterns	to	visualize	the	data	flowing	across	your	network

•	Use	advanced	Wireshark	features	to	understand	confusing	captures

•	Build	statistics	and	reports	to	help	you	better	explain	technical	network
information	to	non-techies

No	matter	what	your	level	of	experience	is,	Practical	Packet	Analysis	will	show
you	 how	 to	 use	Wireshark	 to	 make	 sense	 of	 any	 network	 and	 get	 things
done.

ABOUT	THE	AUTHOR

http://nostarch.com/packetanalysis3/


Chris	 Sanders	 is	 a	 computer	 security	 consultant,	 researcher,	 and	 educator.
He	is	the	author	of	Applied	Network	Security	Monitoring	and	blogs	regularly	at
ChrisSanders.org.	Chris	uses	packet	analysis	daily	to	catch	bad	guys	and	find
evil.
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